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ABSTRACT

A Dialogue of Forms is an investigation of typeface design tools and processes. The
aim of this investigation is to develop techniques of deriving letterforms automatically from a
subset of letters called the control characters. The control characters are representative
letters that contain the primary structural elements, design attributes, and proportional rela-
tionships that characterize a typeface. Design information derived from the control characters
is used to constrain the design of other letterforms. The lower case letters o, h, v, and p are
the control characters studied in this investigation.

The control characters are interactively created and edited by the designer, and stored
as sets of primitive parts. These parts are used as building blocks to construct other letters
automatically. Knowledge about letterform structure and font design consistency is represented
and used to manage the derivation process. Generated designs may be edited by the designer and
changes to parts can be propagated.

Automatic letterform derivation can aid the designer by reducing time consuming labor.
As a visualization tool, it provides a fast and efficient means of evaluating a design idea.

Thesis Supervisor Muriel Cooper
Title Associate Professor of Visual Studies 2
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INTRODUCTION

Reduced to simplicity, typeface is a speci-
fic set of design ideas used to clothe a basic
letterform. It is this set ol design ideas
which is totally aesthetic or artistic.

Mergenthaler Linotype Company

The task of the typeface designer is to conceive a design idea and

apply it consistently to all characters in a font or font family. Conceptually,

this process is structured and systematic. Letterforms are visually related in

weight, shape, spacing, and alignment. Drawn in consistent fashion, key design

elements repeat and blend. ( See Figure ia) 'Thus it is not a question of de-

signing a group of beautiful letters, but rather designing a beautiful group of

letters." [ Mergenthaler Linotype Company 1971 ] ( See Figure ib)

A Dialogue of Forms is an investigation of the process and practice of

creating typeface designs. The aim of this investigation is to examine tech-

niques of automating the generation of letterforms. It is hypothesized that let-

ters can be automatically derived from a subset of forms called the control

characters. The control characters contain the primary structural elements,

design attributes, and proportional relationships that characterize a typeface.

Typically they are the first letters created by the designer "since their design

acryJ35
cedg bp
hmnuKN

Figure ia

harmony
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INTRODUCTION

would suggest how the remaining letters and characters should be drawn."

[Mergenthaler Linotype Company 19711 (See Figure ic)

The concept of automatic letterform derivation differs from current

font generation systems in the following fundamental way. Current systems

require the user to create each individual character shape, character shape

primitive, or structural representation in a font. No software exists to auto-

mate this process. Batch techniques are primarily applied to the generation of

alternate font sizes, weights, and resolutions. To create these additional

ranges, one or more complete fonts must be designed and input by the user.

The idea presented here is that the designer can create a subset of let-

ters and the system can be used to automatically generate preliminary designs

of the remaining characters. With the use of interactive tools, shape modifica-

tions can be incorporated and automatically filtered throughout a font. The de-

signer continues to work back and forth among letters to define subtle typogra-

phic details and to create a unique design pattern.

Thus the system proposed in this thesis is not intended to remove the

designer from the creative process. As Donald Knuth writes: " ... an enormous

amount of subtlety lies behind the seemingly simple letter shapes that we see

0 h p v
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Figure ic



INTRODUCTION

every day, and the designers of high-quality typefaces have done their work so

well that we don't notice the underlying complexity." [ Knuth 1986 ] Type de-

sign requires extensive skill in letter drawing, expertise in the area of print-

ing, an understanding of the reading process, and an artisitc sensitivity to

form. No formalized body of rules exists, to date, that can be applied to the

systematic production of high-quality, finished typefaces. However, automa-

tic processes can provide the artist with a fast and efficient means of evalua-

ting a design idea and can reduce time-consuming labor.

As a preliminary study, this thesis paper functions as both a survey

and an analysis. Chapter One is devoted to a discussion of the type design pro-

cess and the functional role of consistency and constrast in reading. Chapter

Two describes letterform structure and design relationships. The impact of

printing materials and processes on design and style is introduced in Chapter

Three. This is followed by a description of digital font generation and a review

of current design systems and research work related to this thesis in Chapter

Four. Chapter Five describes the role of the control characters in the deriva-

tion process and general techniques used by designers to create a set of let-

terforms from the control characters. In Chapter Six, the demonstration 7



INTRODUCTION

software project that accompanies this paper is introduced. This software was

developed to illustrate the derivation concept and to test procedures and repre-

sentations useful to automatically generating consistent letter designs and to

propagating changes to letter contours. The software design and implementa-

tion is described in detail in Chapter Seven. The concluding chapter contains a

brief software analysis and recommendations for future research.

This investigation is limited to a study of lower case, or miniscule,

letters in sans serif typefaces in general and in Helvetica in particular. Helve-

tica was chosen because it is a highly regularized sans serif design and its let-

ters are conventional forms. Miniscule letters were chosen because they are

more differentiated in design than upper case, or majuscule, forms. Upper and

lower case letters can be derived according to similar design principles. The

control characters used are o, h, v, and p.



TYPEFACE DESIGN

It may be easy to think of one letter, but to
think of its twenty-five relations which
with it form the alphabet and so to mark
around them that they will combine in com-
plete harmony and rhythm with each other
and with all - that is the difficult thing, the
successful doing of which constitutes
design.

Frederick W. Goudy

The type designer is concerned with the perceptual requirements of

the reader. As such, the designer must develop a precise and microscopic

knowledge of the visual effects of letter shapes, massed together, and seen at

small sizes. For legible results, letterforms must be identifiable and familiar,

clearly contrasted in structure, even in weight and spacing, and harmonious in

style.

The 'certainty of decipherment' is an impor-
tant element in true legibility; and in rela-
tion to typography it bears the message that
legibility, or ease of reading, is increased
by letters that are clearly distinguished
from each other and decreased by letters
that look too much like each other. [ McLean
1980 ]

Contrasts in letterform structure create variations in word shape

when letters are combined. ( See Figure 1 a) During the reading process, word

word shape
I- r

Figure 1a
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TYPEFACE DESIGN

shape patterns are perceived. Javal, in 1878, concluded that distinguishing

letter features predominate along the upper portion of a line of text. [ Spencer

1968 1 ( See Figure lb) Twenty five years later, Messmer postulated that

words composed primarily of a variety of contrasting shapes are more legible

than those composed of structurally similar forms. [ Spencer 1968 ] In 1940,

Tinker differentiated between total word shape and total word structure. The

total word structure consists of both the word outline and the pattern produced

by its internal configuration of light and dark values. [ Spencer 1968 ]

Whereas contrasts in letterform structure facilitate word identifica-

tion and recognition, consistencies in style and design ease the flow of reading.

"Where the text letters are uniform, the reader is free to give his attention to

the sense of the words." [ Johnston 1977 ] Letters are designed to combine

and to produce an even impression and tone on the page when set next to one

another. ( See Figure 1c ) No single distinguishing letter feature should domi-

nate or attract the eye. Visual harmony preserves clarity of form.

These typeface designs involve a consider-
able amount of talent and creative product
not only to create a pleasing and effective
design of a single letter of type, but also to
provide a consistent pattern of design which

.LFurL , Li. UiJi.U FL Lii. 1bL.L 5

Figure l b

NEWS NO.9
The history of writing is the history of
the human race, since in it are bound
severally and together, the developm
ent of thought, of expression, of art, of
intercommunication and of mechanic
al invention. It has been said that the
invention of writing is more important

PALADIUM
The history of writing is, in a way, the hist
ory of the human race. since in it are bound
up, severally and together, the development
of thought. of expression, of art. of interco
mmunication, and of mechanical invention
Indeed, it has been said that the invention of
writing is more important than all the victor

AVANTGARDE GOTHIC MEDIUM CONDENSED
The history of writing is, itoa way, t.e history of
the human race, since in it are bound up, severa
Ily and together, the deveiopmnent of thought, of
expression, of Wi, of tntercommunication, and
of mechanical invention Indeed, i has been no
id that the invention of writing is more important
than all the victories ever won or constitutions

Figure 1c

ONE



TYPEFACE DESIGN

will enable the various letters to be fitted
together in all of the hundreds of thousands
of permutations and combinations of twenty
six lower case letters, twenty six capital
letters as well as all of the additional sym-
bols, punctuation marks and numbers nec-
essary to complete the family of print.
[ Mergenthaler Linotype Company 1971]

The task of the designer, then, is to blend the visual contrasts between

letters without impairing their legibility. This is achieved through regularity

and repetition in design. Letterforms are consistently created in weight, spa-

cing, and alignment. Design features such as the curve axis and stroke endings

are structured and repeat. Regularities exist on several levels from general

similarities in shape and structure to subtle curve relationships and size pro-

portions. Subregions of each letter image are designed to interact.

The difference between the look of one
type and the look of another is the differ-
ence between thousands of tiny repeating
details that have been carefully orchestrat-
ed or arranged and combined by the type-
face designer. [ Mergenthaler Linotype
Company 1971]

When sufficiently varied and sufficiently uniform, letters create an integrated

texture and a rhythmic pattern of values.

ONE



TYPEFACE DESIGN ONE

The Design Process

While formal, written rules exist in calligraphy books for hand draw-

ing consistent alphabets with a brush or pen, no such codified knowledge can be

found in the literature on printed forms. ( See Figure 1d ) Writers on type de-

sign refer to the "harmony", "family likeness" , and "unity" of letters in vague

fashion, seemingly unable or unwilling to explicity describe their processes and

principles of design.

To the accomplished letterer, there may be
guidelines but there are no rules. The over-
riding consideration is that the result be
harmonious and pleasing within the context
of the alphabets intended function. Such a
result comes about through subjective
judgements rather than through mathemat-
ical precision. [ Mergenthaler Linotype
Company 1971 ]

The lack of explicit rule description in type design compared to that

found in calligraphy can be explained, in part, by differences in the formation

and technical production of hand written and type drawn alphabets. Brush and

pen letterforms are composed of a series of individual lines, called strokes,

drawn by sequential movements of the writing tool in the plane of the writing

surface. ( See Figure 1e ) Each stroke primitive is defined by a distinct hand

Figure 1d

G

d:

g.

d

3
Figure 1e
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TYPEFACE DESIGN

motion. The pattern and shape of hand movements, called the ductus by Bigelow

[ Bigelow 1983 ], describes the underlying letterform structure and sequence 1
of stroke composition.

Repeating stroke primitives are consistent in character due to uniform Figure 1 f

movements of the writing tool. ( See Figure 1f ) In printed fonts, these visual

consistencies are maintained. However, type drawn letterforms contain subtle

variations in contour curvature not found in hand written letters. Whereas

brush and pen stroke contours and characteristics are constrained by the

movement and use of the writing tool, its angle with respect to the horizontal,

its flexibility, and its shape and size, type drawn contours vary independently.

Each edge is modifiable and unique. ( See Figure 1g ) Thus, printed stroke con- Figure 1g

sistencies in weight, shape, and proportion are created by manipulating contour

edge features to accomodate the eye. They are consistencies of visual appear-

ance and not of actual physical dimensions. ( See Figure 1 h)

Designers know, for instance, that there
are visual interactions between the ele-
ments of a character shape that affect the
way it is perceived; they know also what
the nature of these interactions are, and
that they are governed by certain rules.
But they cannot formulate these rules 13 Figure 1h

ONE



TYPEFACE DESIGN

otherwise than by making shapes that take
the effects of the interactions into account.
[ Southall 1985 ]

Through a lengthy process of iterative testing and proofing, the type

designer draws letter shapes and "changes them until they look correct."

[ Southall 1985 ] Optical properties of weight, shape, fit, and alignment are

modified and refined in relation to one another. As visual contrasts are recon-

ciled, design influences overlap and become interwoven. (See Figure 1i )

Typeface texture and rhythm slowly evolve in the context of words and control

strings. "The type designer thinks with images, not about them." [ Bigelow

1982 ]

Frederick Goudy, describing his design process in the book Tvooloaia,

writes:

For myself, I usually begin a new type with
some definite thought of it's final appear-
ance, though it may be no more than the
shape or position of the dot of the lowercase
i, a peculiar movement or swell of a curve,
or the shape or proportion of a single capi-
tal. From such humble beginnings I progress
step by step, working back and forth from
one letter to another as new subtleties
arise, new ideas to incorporate, which may
suggest themselves as the forms develop,

7 

1

Figure 1i
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TYPEFACE DESIGN

until finally the whole alphabet seems in
harmony - each letter the kin of every
other and of all. [ Goudy 1977 ]

The typeface designer learns through apprenticeship and practice. His know-

ledge is craft knowledge; "it has become part of the intuitive understanding of

the person concerned" [ Southall 1985 ] and cannot necessarily be stated in

explicit form.

Traditional lettering artists draw large filled outline contours with pen

or pencil on paper or transparent film and build and edit shapes by cutting and

pasting pieces of letters together and reworking letter contours. As each

character is rendered it is placed in a word or control string to judge its width

relationships and to determine its spacing parameters. ( See Figure 1j) Set in

words and phrases, its integration and rhythm with other letters are viewed,

compared, and studied. Its design may cause a change in another letterform or

set of letters. These changes are made by redrawing the selected characters,

incorporating the editing changes, and again proofing and marking letters for

correction. ( See Figure 1k ) To accurately judge a design, small scale proofs

are made or the designer stands back and views the letters through a reducing

glass. This process can continue for as long as two years until the character

HAHHHOHRHaHbHeHgHhHiHmHnHoHrHsHuHv
OAOHOOOROaObOeOgOhOiOmOnOoOrOsOuOv
RARHRORRRaRbReRgRhRiRmRnRoRrRsRuRv
aAaHaOaRaaabaeagahaiamanaoarasauav
bAbHbObRbabbbebgbhbibmbnbobrbsbubv
eAeHeOeReaebeeegeheiemeneoereseuev
SASHSOSRgagbgeSgghgigmSngogrgsgugv
hAhHhOhRhahbhehghhhihmhnhohrhshuhv
iAiHiOiRialbieigihiiiminioirisiuiv
mAmHmOmRmambmemgmhmimmmnmomrmsmumv
nAnHnOnRnanbnengnhninmnnnonmsnunv
oAoHoOoRoaoboeogohoiomonooorosouov

rArHrOrRrarbrergrhrirmmrorrrsrurv
sAsHsOsRsasbsesgshsismsnsosrsssusv
uAuHuOuRuaubueuguhuiumunuourusuuuv
vAvHvOvRvavbvevgvhvivmvnvovrvsvuvv

Figure 1j
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TYPEFACE DESIGN

set is complete.

In order to appreciate the magnitude of the
problem, consider the variability of letter-
forms that is reflected in a single super-
family of typeface designs. For each mod-
ern design one of each of three opposing
features must be specified: whether the
type is roman or italic, whether it is normal
weight or boldface and whether it is serif or
san-serif...Taken together, the three fea-
tures generate eight typeface designs. Fur-
thermore, each type alphabet typically in-
cludes characters in 16 different sizes. The
total number of glyphs, or individual bit
maps, necessary to accomodate a single
character for a minimum superfamily of
type is therefore 128; the number of glyphs
necessary for a complete superfamily,
which may include 128 letterforms, is
1282, or more than 16,000. [ Bigelow
1983 ]

During the initial rendering process, the designer creates a set of con-

trol characters or key letterforms used to define the visual attributes of a

typeface. These attributes include the width, height, and alignment relation-

ships, the curve axis, the letter spacing or set width, and the stroke weights

and stroke endings. Design information contained in the control characters is

mapped from letterform to letterform. Through this sequence of mappings

ONE
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visual relationships are structured and stylistic consistencies emerge. "It is

as though you have to take the qualities of a given 'a' and, so to speak, hold

them loosely in the hand as you see how they slip into variants of themselves

as you carry them over to another letter." [ Hofstadter 1985 ]

In order to provide a framework for discussing the role of the control

characters in the design process, Chapter Two will be used to define the char-

acteristics of letterforms and their design relationships.



LETTERFORM STRUCTURE AND DESIGN

In the "Statement of Mergenthaler Linotype Company in Support of the

Registerability of the Claim of Copyright in Original Typeface Design", the fol-

lowing definition for "typeface" is given.

As used herein, the term 'typeface' shall
mean sets of designs of a) letters and alpha-
bets as such with their accessories such as
accents and punctuation marks, and b) nu-
merals and other figurative signs such as
conventional signs, symbols and scientific
signs, which are intended to provide means
for composing texts by any graphic tech-
nique. [ Mergenthaler Linotype Company
1971 1

A "font" is defined by Mergenthaler as:

The type font is merely the assortment of a
typeface in a particular size or style for a
particular purpose. In any given font, there
are usually seventy to ninety or more char-
acters. [ Mergenthaler Linotype Company
1971 ]

The focus of this investigation is on the relationships that exist among letter-

forms within a type font. In other words, we are interested in what the letters

in each horizontal row in Figure 2a have in common and not in what the letters

in each vertical column have in common.

Within a typeface, each letter, numeral, and sign has a characteristic 18

a babC def...
a fb--

a b
ab

de...

Figure 2a
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LETTERFORM STRUCTURE AND DESIGN

visual structure and a set of part primitives that distinguish its identity as a

unique element of the alphabet. The type designer does not invent new conven-

tional letter structures; he uses those that already exist. "The basic forms of

letters are fixed; that is, they have become classic." [ Goudy 1977 ] Repro-

duced in Figure 2b are conventional forms of the miniscule alphabet. These

letters are from the typeface Helvetica.

The structure of a letterform constrains its part configuration, or the

spatial relationships among its parts, and their joining characteristics. Within

the miniscule alphabet, certain part configurations are valid. For example, the

two bowls of a capital B are situated to the right of the stem and horizontally

aligned in relation to it. ( See Figure 2c ) Therefore, sets of rules can be

defined to describe the relative positions of each part and their types of link-

age. The attributes of each letterform define the horizontal position, orienta-

tion, alignment, size, and shape geometry of its part configuration.

Reproduced in Figure 2d are the parts of each letterform, commonly

called strokes. As mentioned in Chapter One, the term "strokes" derives from

pen lettering and refers to the set of discrete lines drawn with the writing tool

to form each letter. In printed fonts, stroke shapes are defined by sets of

a b c d e f g h i j k I m
n o p q r s t u v w x y z

Figure 2b

F.ue

Figure 2c
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V Z Figure 2d
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LETTERFORM STRUCTURE AND DESIGN

contour edges hand drawn by the designer or engraved in metal. Parts function

as integrated elements within each letter. Depending on the typeface, context,

or use, their boundaries may be redefined. Although no standard nomenclature

exists for naming the parts of letters, the system developed by Philip Gaskell

for labelling the parts of serif letter designs utilizes conventional terms. ( See

Figure 2e )

Each part has a characteristic set of visual attributes that define its

horizontal position, orientation, vertical alignment, shape and size within each

letter. The shape boundaries and attributes of a part are constrained by the

position, length, direction, curvature, and joining relationships of its contour

edges. There are two general part shape types: straight and curved. Straight

strokes vary in length, thickness, direction, and slope. Curved strokes vary in

length, thickness, direction, and curvature.

Parts that share common shape attributes are visually related and

they may be grouped into the part primitive classes illustrated in Figure 2f .

Within each class, subclasses of parts can be defined such as the ascender stem

subclass or the crossbar subclass. Parts within each subclass share identical

or nearly identical sets of shape attributes. They are consistently designed

TWO
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MINUSCULES
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Figure 2e
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23 Figure 2f (continued)
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24 Figure 2f
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LETTERFORM STRUCTURE AND DESIGN

throughout a typeface. However, although they may appear visually consis-

tent, repeating part instances often differ in their physical geometry due to the

visual interactions within and among letterforms. Therefore, each repeating

part instance can be inherently nonuniform in character.

Although differentiated, sets of letterforms share parts in common.

Within the miniscule alphabet, four general types of letterforms can be dis-

cerned. They are those composed primarily of (1) vertical strokes, (2) curved

strokes, (3) vertical and curved strokes, and (4) oblique strokes. ( See Figure

2g ) These are referred to as the square letters, the round letters, the square

and round letters and the oblique letters respectively. Their basic shapes re-

peat throughtout a typeface design.

The control characters are representative letterforms from each let-

ter shape category. They contain the primary design features and proportional

relationships that repeat throughout a typeface. Thus the set of control char-

acters is used to establish the design harmonies within and among each cate-

gory of letters. The primary proportions that characterize a typeface are the

letter height to width ratio, the character height to stroke thickness ratio, the

letter width ratios, the ascender, xheight, and descender height ratios, and the

i I f j r t
square h n u

round c e o s

square/round a b dgpq

oblique kvwxyz

Figure 2g
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LETTERFORM STRUCTURE AND DESIGN

thick to thin stroke weight ratio. The following discussion will be used to in-

troduce letter design relationships.

Width Relationships

The o is the primary letter in a typeface. Its round width determines

the width rhythm of the remaining letters, and its width to height ratio deter-

mines the major size proportions. Except for m and w, the o and the round let-

ters are generally the widest letters in the miniscule alphabet of a proportion-

ally spaced font. ( In sans serif cases this is not always the case. ) To appear

optically related in width, square letters are more narrow than the rounds.

The width of the square and round letters lies between these two. The oblique

letters generally appear similar or identical to the square letters in width. The

single stroke letters are the most narrow. ( See Figure 2h ) The width rela-

tionships illustrated in Figure 2i are based on classical proportions derived

from the Trajan Column inscription in Rome. The width of the square majus-

cules on the Trajan Column is roughly 4/5 the circular round width.

m
w

Figure 2h

o h v p

Figure 2i
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LETTERFORM STRUCTURE AND DESIGN

Height Relationships

The heights of the letters in a typeface are proportionally related to

one another. Due to the nature of visual perception and optical illusion, round,

square, and diagonal letters of the same geometric height appear unequal.

Therefore, the height of the round letters is slightly extended above or below

the square heights, and the oblique letters dip slightly lower at their apex to

compensate for these visual effects. ( See Figure 2j)

Alignment Relationships

Letters are optically aligned along an imaginary horizontal line called

the baseline. There are three other primary alignments in the miniscule alpha-

bet. From top to bottom they are the ascender alignment height, the xheight or

meanline, and the descender depth. Because of their actual height differences,

square, round, and diagonal character alignments differ. Consequently, it is

possible to imagine four or more secondary alignment lines for the round and

diagonal letters. ( See Figure 2k) In addition, the arches in letters such as h,

n, or m may have their own alignment value.

The h is used to determine the square ascender and baseline alignment 27

III o
Figure 2j

.. . .... p ...
Figure 2k

ascender
xheight

baseline
descender
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LETTERFORM STRUCTURE AND DESIGN

and the ascender height, the p is used to establish the descender depth and the

descender square alignment, the x determines the square xheight and align-

ment, and the v defines the diagonal alignment height. The o determines the

round height and alignment and the square to round height and alignment propor-

tions.

These alignment heights are proportionally related to one another.

Typefaces can have a small xheight in relation to the ascenders and descenders

or a large xheight. This can have an impact on the legibility of a typeface. At

small sizes, the xheight is generally enlarged.

Letterspacing/Set Width

The set width includes the body width of a letter and the spaces de-

signed to its left and right, called the left and right sidebearings. The sidebear-

ings are adjusted to determine character fit. ( See Figure 21) Character fits

throughout a typeface are designed to appear optically equal in area. These

areas are proportionally related in size to the area enclosed by the positive

shape of each letterform, or the counterform. ( See Figure 2m )

To illustrate, Figure 2n shows spacing between squares and circles

ABCDEFGHIJKLMNOPQRSTVWXYZ
abcdefghijklmnopqrstuvwxyz

Figure 21

Figure 2m

28 Figure 2n
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which are geometrically equal. These areas appear uneven to the eye. Proper

adjustment situates the squares further apart to compensate and to appear

optically equal to the space between the circles. When letters are substituted

for these shapes, as in Figure 2o, the spacing problem can become more com-

plicated, depending on the configuration of square, round, and diagonal strokes

in relation to one another. When the letterspacing is narrow, the white areas

between letters dominate and attract the eye. Under "normal" reading con-

ditions, counter and letterspace areas appear equal.

As the weight of a typeface increases, the body size increases, the

counterspace areas decrease, and the fit between characters becomes tighter.

( See Figure 2p ) The set width of a letter is also influenced by the presence or

lack of serifs, and their length, shape, and positioning on a letterform.

Certain character combinations need to be individually adjusted. This

is called kerning. In Figure 2q, the intercharacter spacing between T and 'y'

appears too wide and must be reduced by overlapping the side bearings.

Stroke Thickness

Stroke thicknesses are consistently maintained throughout a typeface. 29

Letterspacing
Letterspacing
Letterspacing

Figure 2o

H
H

Figure 2p

Figure 2q
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However, in order to appear optically equal, they actually differ in their phy-

sical dimensions. Variations depend primarily on the stroke type and slope.

Horizontal straight strokes are thinner in width than vertical straight strokes.

Similarly, diagonal stroke weights lie between the horizontal and vertical and

vary according to their degree of slope. Curved strokes are the thickest and

gradate from thick to thin along an axis of curvature. ( See Figure 2r) The

curve axis may be oblique or vertical. The degree of thick to thin stroke con-

trast in a typeface varies and is a significant design feature which can add

texture to a design. ( See Figure 2s )

Further modifications in stroke weight depend on the density or com-

plexity of a letter ( an 'm' with three straight strokes in close proximity will

appear too dense or black unless its stroke weights are slightly reduced), its

legibility ( often the top of the crotch of the 'n' in indented or thinned to accen-

tuate its form), and the spatial location of the strokes in relation to one another

( the curve weight and axis on the bowl of 'p' and b', for instance, may differ

due to the visual interaction produced by the location and alignment of the

straight stems in relation to the bowls ). ( See Figure 2t )

The degree of greyness, or visual weight, of a typeface is a function

I Im\\\
OI\

Figure 2r

Figure 2s

Mm
Figure 2t
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of the stroke thickness and its relationship to letterform size. Stroke weights

merge with counterspace areas to create the image weight of each letter.

Character height and width affect the overall black to white ratio. Tall letters

will appear visually thinner than short letters of the same stroke thickness and

wide letters will appear less heavy than narrow characters. ( See Figure 2u)

Stroke Endings

Serif designs differ in length, shape, degree of contrast, placement,

and alignment. Top and bottom serifs often differ in appearance. Serifs con-

tribute to the texture and pattern of a typeface design. ( See Figure 2v )

Sh

kkk
kkk

h h h
h h h
h h h
h h h

hhh

Figure 2u

Figure 2v
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AI technical requirements must be consid-
ered and regarded even at the drawing
stage. A printing face is the sum of a series
of factors which must be fused into harmon-
ious unity if a useful type is to result. To
be so designed, a type demands of its de-
signer the knowledge of historical coherence
in type development, artistic perception,
and an inclusive insight into the technique
of typecasting.

Hermann Zapf

In addition to the requirements of legibility, each typeface design must

be adapted to the materials and technical processes of printing and type found-

ing in order to be reproduced faithfully and consistently. This relationship be-

tween design and technology has altered the design characteristics and propor-

tions of letterforms over time. "The first printers did not realize that the

printed form had its own kind of laws and was capable of making its own kind of

impact." [ Bigelow 1983 ] As type design moved from its imitative phase into

innovation, written letter shapes were reinterpreted as typographic forms.

"Proportion, width, weight, and construction were altered independently of the

underlying topology of the letter, rather than being partially determined by it

as they were in the ductal letter." [ Bigelow 1983 ] ( See Figure 3a)

no no
no

Figure 3a
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Reproduced in Figure 3b ( next page ) are typefaces that illustrate

significant design changes that have occured over the past 500 years. Oldstyle

typefaces exhibit the round letters, oblique curve axis, minimal thick and thin

stroke constrast, and concave serifs characteristic of manuscript forms.

Transitional faces, such as Baskerville, contain a greater degree of thick to

thin stroke contrast, shorter and less concave serifs, and the curve stress

varies from oblique to vertical. Baskerville's designs were influenced by the

introduction of smoother papers. [ Ruggles ( in preparation ]) Copperplate

engravings had a significant impact on the design of Modern typefaces. Thin

strokes became hairlines and serifs were slightly bracketed or not bracketed at

all. The rise of commercial printing during the Industrial Revolution created a

demand for typeface designs that could be used for display purposes, periodi-

cals, and newspapers. In the early 1800's, square serif monoline faces were

designed. Although many weights and widths of square serif typefaces were

eventually produced, the original letterforms were very bold in weight, with

minimal contrast in stroke thickness and little serif bracketing. During the

ninteenth century, an abundance of decorative, embellished faces were created.

( not shown ) Sans serif types appeared in the 1800's and were revived in the 33
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24 point Centaur (Foundry) Oldstyle

ABCDEFGHIJKLMNOPQRSTUVWXYZ&
abcdefghijklmnopqrstuvwxyz 1234567890$

24 point Baskerville (Foundry) Transitional

ABCDEFGHIJKLMNOPQRSTUVWXYZ&
abcdefghijklmnopqrstuvwxyz

1234567890$
24 point Bodoni Trueface (Ludlow) Modern

ABCDEFGHIJKLMNOPQRSTUVWXYZ&
abcdefghijklmnnopqrstuvwxyz

1234567890
18 point Clarendon Bold (Foundry) Slab Serif

ABCDEFGHIJKLMNOPQRSTUVWXYZ&
abcdefghijklmnopqrstuvwxyz

1234567890$

24 point Futura Medium (Foundry) Sans Serif

ABCDEFGHIJKLMNOPQRSTUVWXYZ&
abcdefghijklmnopqrstuvwxyz

1234567890$ Figure 3b
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1920's and 30's in geometric form by the Bauhaus designers. These simplified

letterforms represented an innovative break from the traditions of roman type.

In the late 1900's, the concept of a typeface "family" composed of several

variations of a single design was introduced. Reproduced in Figure 3c is the

Univers design program developed by Adrienne Frutiger.

Type Founding and Print Technology

Early printed roman typefaces modelled the letter structures, propor-

tions, and patterns of design found in humanist scripts of the ninth and tenth

centuries and their inscriptional origins. Each letterform was engraved, at

actual size, on the end of a steel rod called a punch. The punch was used to

strike a copper matrix from which a three dimensional rectangular block of

metal type was cast in an adjustable mold. The block of type contained a raised

letter image, in reverse, on its face. ( See Figure 3d ) To print a page of text,

the pieces were hand composed or set next to one another, prepared with ink,

and impressed on paper.

The invention of the adjustable mold by Gutenberg in the mid 1400's

made it possible to create uniform and easily replicable pieces of metal type

u v rs unvers un-ivers univers uies svr
--

univers univers u rs unve

univers

Figure 3c

K
Figure 3d
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that could be fit together accurately. Each piece had a constant height and

thickness, but was variable in width. Letter designs were constrained within

the rectangular face and carefully positioned to achieve optically even letter

spacing and proper vertical alignment. Unevenly spaced character combinations

were kerned or cast together on a single block of type. ( See Figure 3e )

These early typeface designs were crude and irregular forms. The

paper used to print text from type had a thick, spongy quality and was "dam-

pened before use to soften its fibers so that the printing ink would adhere to

it." [ Ruggles (in preparation) ] ( See Figure 3f )

Hand-made paper of long fibre, used damp and
with an elastic back, gave an impression in
which the breadth of the actual lines form-
ing the face of the type was uniformly wi-
dened, and consequently the hairlines and
serifs were broadened out of proportion to
the main-strokes, the external corners at
the same time becoming rounded. [ Legros
and Grant 1916 quoted in Ruggles (in prep-
aration) ]

Typeface designs were modified to compensate for the effects of ink on paper.

In addition to the requirements of the printing process, the punchcutter

and designer had to learn the subtle alterations of letter shape and proportion

fi fi

AY AY

Figure 3e

RQEN
baegn

Figure 3f
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that were necessary for proper legibility and consistency over a range of point

sizes. ( A point is a standard unit of type measurement used to calculate the

height of letterforms. There are roughly 72 points to the inch.)

A sense of scale and the adaptation of letters
to the various sizes of type so as to make
them all as comfortable to the eye as possi-
ble is a very important part of the letter-
cutter's art. It is a mistake to think that a
range of types from great to small can all
be made from one set of drawings. I said
that before he can begin cutting a letter, a
punch-cutter must have the whole fount in
his mind's eye; but in fact he must do more.
He must conceive a fount that is susceptible
of a production in all the various sizes in
which type is needed. [ Carter 1954
quoted in Johnson (in preparation) ]

Letter designs were not simply scaled versions of one another. Ascender, de-

scender, and xheight size relationships, letter widths and shapes, and stroke

thicknesses within each font were altered to appear visually consistent. ( See

Figure 3g ) Although some punchcutters worked from scaled drawings, the eye

was considered to be the best judge of correct form and proportion.

In 1885, Lynn Boyd Benton issued a U.S. patent for the pantograph

machine. This invention ushered in the "era of type manufacture." [ Southall

RQEN baegnov
RQEN baegnov
RQEN baegnov
RQEN baegnov

Figure 3g
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1985 ] Although the pantograph was initially used to cut matrices, it was later

applied to the cutting of punches. [ Ruggles ( in preparation ) ] Mechanical

punchcutting was used to mass produce identical type matrices that were re-

quired, in large quantities, for the success of hotmetal typecasting systems.

The punchcutting machine was a pantograph with a sharp cutting tool

on one end used to cut steel punches by tracing and reducing large metal pat-

terms of letterforms. ( See Figure 3h ) The metal patterns were created from

large scale drawings produced from an existing typeface or print of type, or

from an original ink or pencil design. [ Warde 1935 ] Measurements in tenths

of thousandths of an inch were marked on the drawings and used to translate

"...every detail...into terms of the size of the matrix which is to be struck." Figure 3h

[Warde 1935 ]

The mechanical punchcutting system caused a significant change in

type design practice. The emphasis shifted from making to drawing. [ Southall

1985]

In hand-cutting the punch can be called the
original work of art in the whole process of
making type. It is that single and unique ob-
ject by which one can obtain as many as
500 matrices, each matrix being capable of 38
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forming millions of types. But in machine-
cutting the unique object is the drawing,
from which any number of patterns can be
made, each pattern serving for any number
of punches of the letter. [ Warde 1935 ]

The need for large scale drawings forced the designer to have to previsualize

or anticipate the final appearance of letters scaled down to text size. "In

passing to machine production they must, for clear comprehension, first realize

that here the thinking-out part of the work is seperate from, and altogether

precedent to, any actual making... " [ Warde 1935 ]

The success of typecasting systems was also dependent upon the in-

troduction of self-spacing type by Benton in the 1830's. Self spacing type is a

method of tabular composition based on a unit system that divides the horizon-

tal width of the em square into even increments. (An em square is a unit of

type measurement equal to the square of a given point size of type. An eighteen

point em square is eighteen points by eighteen points. ( See Figure 3i) ) Stan-

dard units sizes were eighteen, thirty-six, and fifty-four units to-the-em. The

width of each character was calculated to be a certain number of units wide.

For example, single stroke characters such as I may be six units wide while M

may be eighteen units wide. (See Figure 3j) Self-spacing type was used to

-1em_

- 18 units -
to the em

Figure 3i

NI
Figure 3j
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mechanize the counting of line length and escapement in the Monotype type-

casting system.

The Linotype machine, invented by Ottmar Mergenthaler in 1884, cast

entire lines of type at once. Text content was input by the operator with a

keyboard. With each keystroke, a brass matrix mold of the indicated letter

was released and positioned in place until an entire line of matrices was

formed. When each matrix was properly spaced, the line was cast in molten

lead. To accurately justify a line of text, small wedges were inserted between

the matrices to force their separation. ( See Figure 3k ) A counter was used

to measure character widths to determine the available space per line. Each

matrix contained two molds to store letters from two different fonts. ( See

Figure 31) The characters in these fonts had to be identical or nearly identi-

cal in width. This resulted in width distortions in italic letterforms when ro-

man and italic faces were paired. Conventional italic forms were narrower

than those designed for the Linotype machine.

In the Monotype machine, developed by Tolbert Lanson in 1887, indivi-

dual pieces of type were cast to compose a line of text. A perforated paper

tape was used to drive the typecaster. In contrast to the Linotype system, the

Figure 3k

~t1

Figure 31
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typecaster required the use of letterforms designed according to a prespecified

width unit system. ( See Figure 3m ) Consequently traditional letter widths

and proportions were altered to accomodate the new technology.

With the advent of photocomposition in the 1950's, typeface design

was no longer restricted to the rectangular block of metal type. Drawn letters

were photographically reduced and stored on a transparent film strip. The neg-

ative film masters were exposed to photosensitive paper or film. Three or

four sizes of film masters were typically created by the designer. Alternate

character sizes and letter spacing could be created by photographic distortion

with the use of a lens system. Therefore deliberate variations in character

weight, slope, width, and height could be made from the original set of designs.

This flexibility in type manipulation made possible by phototypesetting led to

greater typographic freedom and creativity.

In addition, the unit system was refined in second generation photo-

typesetters. [ Ruggles ( in preparation ) ] Unit widths became significantly

smaller in size, or higher in resolution, and thus the designer could vary letter

widths more freely and make subtle adjustments in spacing. To counteract the

effects of light exposure on different parts of the character image, stroke

Unit ow A B C D R F G H I K L M N 0 Row

* 2 jf a!: ;J-jiI:: | 2
7 3 C r se ) ( ra t v Z 3
a 4 t * b g ? z c e z S t ? 4
S S 9 7 5 3 1 0 9 7 5 3 1 0 3

c 1 c 86425-S 86421 6
x k y d h a x J g o a P F L T 7

a Afu . S v y p u n Q B o E

is 9 D I t P f fi q k b h d V Y G R 9
U Io M A J S T ff I Z I ff X U N 10
2 it 0 L C Fw a L P F q mZQG 1

18 12 E & Q V C B T O E A w P T R B 12
U13 D A Y ffl ffi m e Y U G R E w V 13
18 14 K NH ihiX DN K Hm & b X U'4

Y4 s & %% V2 WM- M W%EE s
U Git
ValneflonJ A 9CDK 9F G HI IK LUMNG0 Ro

Figure 3m
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weight proportions and dense areas, such as join features, were modified.

Third generation phototypesetters incorporate the use of CRT tech-

nology and digital methods of storing and processing character data. Character

images are scan converted onto the CRT screen on the fly. These images con-

sist of discrete small units composed on a raster grid. As the linear scaling of

type became an accepted practice, fewer original sizes were designed, although

this technique has not been universally approved of by designers and producers

of type. Before the development of digital methods of design and font conver-

sion, typeface designs for CRT phototypesetters were drawn by hand.

THREE



DIGITAL FONT GENERATION

With the advent of digital typesetting and the expanded need for digital

typeface designs, several systems have been developed to merge the font gen-

eration process with computer technology. These systems are used primarily

for analog to digital font conversion and font design modification. Analog to di-

gital font conversion is the process of translating existing analog letterform

images into digital outline or bitmap format. Outline format represents char-

acter shape information as a series of curve control points, connected by

straight lines and curve segments that define the contour boundaries of each

letter shape. (See Figure 4a) Bitmap descriptions are composed of discrete

point pixel coordinates that are either run length encoded or stored as an array

of on and off pixels. ( See Figure 4b )

Analog source images are scan converted or manually transformed

into numerical data. Manual outline processes require the user to mark dis-

crete curve control points along the contour edge of each letter image. ( See

Figure 4c ) Control points are entered and edited by specifying coordinates

interactively with a puck or through a programmed listing of coordinate data.

Outline representations of high order continuity are resolution inde-

pendent. The curve forms typically used are bezier curves, conic sections, or

Figure 4a

ef ef
ef ef

Figure 4b

Figure 4c
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hermite curves. They can be scaled, rotated, translated, and output to varia-

ble resolution devices by altering stroke writing patterns. Bitmap fonts, on the

other hand, are resolution dependent and must be created, edited, and stored

individually at each desired point size and aspect ratio. Due to the nature of

sampled systems, scan conversion algorithms result in quantization error and

illegibility, particularly at low resolutions, under twenty lines to the em

square. ( See Figure 4d on next page ) Low resolution bitmaps are designed by

hand on paper or with the use of an electronic grid.

The Ikarus system, designed by Peter Karow of URW, incorporates au-

tomatic scan conversion correction processing. Inconsistencies in stroke

weight, character height, alignment and curve symmetry are normalized and

justified without designer intervention. ( See Figure 4e ) Once adjusted,

bitmap designs can be modified with several batch programs. ( See Figure 4f)

Character heights and widths can be altered independently to expand and con-

dense characters, and letters can be automatically italicized, shaded, con-

toured, and rounded. Interpolations can be performed to create intermediate

weights of a typeface.

Although reducing time and labor by fifty percent over pen and pencil

-1K

Figure 4e
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correction techniques [ Flowers 1984 ], batch produced bitmaps require ex-

tensive editing. Faces designed originally for photocomposition are not directly

usable. Each character in a digital font must be tailored to the specific require-

ments of digital output devices. Consequently, skilled lettering artists must

edit each letter of each typeface.

An alternate method of correcting bitmap characters is to use the PM

Digital Spiral developed by Purdy and MacIntosh. The PM Digital Spiral is an

extremely high resolution spiral form or template that can be uncurled and

placed along the edge of a bitmap character. A series of curve lengths, angles,

and starting points is created and used to correct dropout and smooth aliasing

errors. ( See Figure 4g )

The Camex Letter Input Processor, adapted for use at Bitstream, Inc.,

was developed in response to the need for real-time editing and graphic inter-

action. Outline editing tools include functions to select, insert, delete, move,

and constrain individual points graphically. By forming point groups, curve

segments and letter parts can be copied, moved, scaled, and rotated to recre-

ate repeating elements, build structurally related letters, and compare similar

or identical letterform features. ( See Figure 4h )

Figure 4g
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The outline images from the Camex LIP are input to a Symbolics 3600

Lisp machine where significant design features of letters, referred to as zones,

are interactively marked, measured, and named and individual scan lines are

adjusted for accurate bitmap reproduction. The zones create an underlying

pattern of horizontal and vertical dimensions referred to as a plaid. To auto-

matically generate a series of bitmap fonts, zone values within each letter are

constrained to the design features of the control characters in each font. ( See

Figure 4i)

Typeface Design Systems

Adopting terminology defined by Southall in "Designing new typefaces

with Metafont", analog to digital font conversion systems are drafting systems

and can be differentiated from systems developed for use in digital typeface

design. Drafting systems are used to input and convert already existing type-

faces or letter drawings into digital form. Design systems are used to create

new typeface images. Generally they provide tools that simulate the use of

traditional pen and paper techniques such as sketching and drawing, cutting and

pasting, copying, and proofing in an interactive and visual environment intend- 41
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ed to support the fluidity of the creative process. Three design systems will

be reviewed here. This discussion will focus on the unique features of each.

ELF is an interactive graphics system developed for typeface design

that supports all stages of the design process, from sketch creation to final

proofed image generation. Work on ELF began in 1979 by Kindersley and Wise-

man at the University of Cambridge. Character images are drawn with a light-

pen on the display surface and translated by the system into a series of line

segments or filled trapezoidal shapes. As the designer modifies images, an in-

ternal model of geometrical manipulations is stored and a textual log file is cre-

ated that contains the sequence of actions performed by the user during each

design session. The log file can be replayed or edited to recreate a series of

design modifications on viewed images. ELF includes unique techniques for man-

ipulating character spacing based on area computations performed on each let-

ter image to determine its optical center. As the designer edits a letterform

feature, the optical center can be recomputed and the "intrinsic width" of each

letter recalculated. Character images are automatically updated as the de-

signer proceeds.

IMP, a computer aided design system developed by Carter and Wise-
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man on the color Rainbow workstation at the University of Cambridge, takes

advantage of windowing facilities to model concurrent design contexts. The de-

signer can move freely among five window areas, each associated with an ac-

tive level of the design process or problem solving hierarchy. Windows and

transparent overlays are created to sketch, smooth, grid, build, edit, copy,

compare, and proof letterform images. Characters can be magnified for editing

and simultaneously updated in bitmap or outline format in the proof and compare

windows. Letters from several different fonts can be selected for viewing.

Single bit or grey scale letter images are edited by positioning the cursor and

cycling through pixel colors interactively.

At Stanford University, Lynn Ruggles is developing an interactive

workstation called Paragon that combines traditional paper-oriented type de-

sign techniques and digital processes. Sketches of characters or character

primitives can be drawn on the screen and converted into smoothed outline and

bitmap representations displayed at varying sizes. The designer works with

overlays that function as "translucent sheets of paper' to create and edit each

image.
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Related Work

The notion of encoding typeface consistencies is not new. Three note-

worthy experimental systems have been created to explore the idea of auto-

matically generating and manipulating typeface designs. In contrast to analog to

digital font conversion systems and design systems that are used to record

character contour shape data in numeric form, each of these systems repre-

sents letterform primitives such as individual strokes and letterform structure

and each makes use of shape parameters that control letter characteristics

such as height, width, stroke weight, and serif designs.

ITSLF, the InTeractive Synthesizer of LetterForms created in 1967 by

Mergler and Vargo, was the first computer system developed to produce actual

typeface designs. Earlier systems had been applied to the reproduction of out-

line character images on vector CRT's or with dot matrix plotters using coord-

inate shape data punched onto batch processed cards. Mergler and Vargo ex-

tracted geometric letterform features from enlarged characters and stored

them in the computer as straight and curved lines. Design features such as let-

terform heights, widths, stroke weights, and stroke endings were stored as

52
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parameters and used to modify the geometric data to produce varying typeface

designs. ITSLF had both an automatic and a manual mode. The manual mode was

used to alter parameter values individually for each letter. In automatic mode,

the parameter values for the capital letter 'E' were input and used to calculate

the designs of the other letterforms. Mergler and Vargo could generate 24

capital letters with their system. These are illustrated in Figure 4j. They

concluded that while it was possible and useful to modify geometric letter de-

signs parametrically, further investigation was necessary.

In 1976, Coueignoux developed an extensive set of rules for describ-

ing the consistencies in structure and design within and among Roman printed

fonts. His system, CSD, or Character Simulated Design, was used to automa-

tically generate upper and lower case character drawings. Each character was

defined by parameters and parameter values. Parts that shared similar or

identical sets of parameters were grouped into families of related shapes, i.e.

stems, bowls, etc. The common parameters shared by each shape were classed

into the following parameter sets: height, thick and thin thickness, horizontal

extension, angle, and squareness, and discrete type. Relationships among the

parameter values within each parameter family were delineated as rules of

ZZC'R NNOUU
Y YVV DuDKK
H l L L E E A A

PPTT UBBGMM

Figure 4j

FOUR



DIGITAL FONT GENERATION

proportion. The spatial relationships among parts were described by rules of

disposition. The user manipulated parameter values to modify the shape of each

part.

Coueignoux developed a generative grammar used to automatically

synthesize part and letter descriptions, to construct part configurations, and to

constrain part joining relationships. To create each letter, parameter values

for each family of parameters or for individual parts, and the part locations

within each letterform were input in numerical form by the user. Repeating

primitive shapes were stored as routines that could be called by each letter

procedure. To output a character outline, the primitive routines generated sets

of conic curve break points and curved or straight line segments.

In total, forty four letter routines and thirteen part primitive routines

were used. The primitives are illustrated in Figure 4k. New parameters could

be defined by the user with the use of Coueignoux's grammar. There were Figure 4k

roughly 300 part parameters and 250 letter paramaters. The number of para-

meters per primitive varied from 3 to 30 with an average of 10, and the num-

ber of values per parameter ranged from 7 to 55 with an average of 27. The

parameter values were taken from measurements made on enlarged drawings 54
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typeface." [Southall 1985] These parameters describe the height, width,

slope, and shape of "virtual" pens and erasers that trace a skeletal letterform

input by the designer. ( See Figure 41) Additional parameters define the hori-

zontal and vertical dimensions of letters, letter slope, and a number of serif

attributes such as the degree of bracketing, crispness, and length. ( See Figure

4m)

The designer creates "symbolic descriptions" of letter shapes by wri-

ting programs that specify the pen's motion, the path it travels, and its shape

and size. Each letter is drawn with a seperate character routine. ( See Figure

4n ) By manipulating parameter values, it is possible to create a variety of

letter shape modifications with each single program. 'The designer goes on

making changes to the specifications until the marking device produces a shape

that has the desired appearance." [ Southall 1985 ]

Realizing the limitations of pen-defined shape parameters for reprodu-

cing the subtle variations in contour detail characteristic of printed letter-

forms, Metafont was modified to include outline drawing routines. By incor-

porating programs that can express bezier curve control points and slope de-

scriptors in the Metafont language, Knuth was able to retain the pen-meta-

Figure 41

The x-height and the heights of ascenders
and descenders can be independently specified.

A 'slant parameter transforms the pen mo-
tion, as shown in this sentence, but the pen shape
remains the same. The degree of slant can he nega,-
tive as well as positive, if unusual effects are desired.

os-f ema-waf'J4 . Perhaps the most interesting
use of the slant parameter occur. ,hen Computer
Modern Italic fonts are generated unthout any slant.

Figure 4m

x2=50 y2.100;
x3=100; y3=200:
x4=ISO 14-100:
5S=200; yS-ft

-n pen:
20 draw 5.3:
20 draw 3..:
IS draw 2.4;

56 Figure 4n
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of Baskerville, Bodoni, Cheltenham Medium, and Times Roman Bold and used to

output drawings of each font on a vector screen or with a 200 dot per inch

electrostatic printer. At the time of Coueignoux's writing, only the primitive

parameter values were saved in the computer. Letter values and lists of parts

had to be re-entered. Output characters were photographed and reduced to

size.

The most well known system originally developed for typeface design

is Metafont created by Donald Knuth at Stanford University. Metafont is a pro-

gramming language used for making character shape specifications. It is "not a

graphic-mode design system in the traditional sense." [ Southall 1985 ] Spec-

ifications are issued in numeric and symbolic form and are used to drive a

marking device that draws graphic character shape images. [ Southall 1985 ]

Knuth sought to capture the "meta-characteristics" of a typeface or

the kernel of design principles used to vary letter drawings throughout a series

of related font designs. Image descriptions are produced by setting font wide

shape parameters. "In our terms, a meta-typeface is a typeface design in

which the stylistic and functional visual attributes of the design have parame-

ters associated with them. Each setting of the parameters defines a different 55
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phor. Contour edges are specified with two pen strokes, each one pixel wide.

However, the outline drawing routines do not make use of the concept of "meta-

ness", except where it can be applied to changing the point size of letters with

linear scaling techniques.

Richard Southall, a designer who worked closely with Knuth and with

Metafont, sums up the essence of "a-priori meta-design" in the following quote.

In a meta-design for a typeface, the speci-
fication for the character shape incorpor-
ates specifications for the changes in the
shape that occur as a consequence of changes
in the typeface parameters. In a symbolic
specification for a character shape, these
specifications will be in the form of functions
that relate features of the character shape to
values of the typeface parameters; and we
can describe as a priori meta-design a design
method in which these functions and their
coefficients are specified explicitly by the
designer...Doing a priori meta-design in a
way that ensures the eventual production of
technically satisfactory character images
for all reasonable combinations of typeface
parameter settings requres the same thing
that successful symbolic-mode design re-
quires: explicit formulations of the rules that
govern the visual interactions between the
elements of character shapes. [ Southall
1985 1
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Southall stresses that

...we do not at present have the theoretical
basis for predicting the shapes of technical-
ly satisfactory typeface characters on which
a successul symbolic-mode design system
could be built. It is true that once the design
of a technically satisfactory typeface has
been completed, exact definitions of the
shapes of all the characters in it do exist:
but these definitions are graphic rather than
symbolic, and the routes by which they were
arrived at cannot be restated explicitly in
algorithmic form. [ Southall 1985 ]
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The unique contribution of this thesis is the notion of automatic letter-

form derivation. As stated in the introduction, it is hypothesized that letter

designs can be derived from the set of control characters. In order to under-

stand the role these letters play in the design process and the problem solving

activity of the designer, this Chapter will be used to describe the derivation of

letterforms and general techniques that can be applied to creating a preliminary

set of consistent characters.

Letterform Derivation

Figure 5a on the next page illustrates and lists the part and letter at-

tributes contained in the control characters h, o, v, and p. The o contains the

primary round letter characteristics, the h the primary square letter charac-

teristics, the p the round and square letter characteristics combined, and the v

the diagonal letter information. Attributes and values extrapolated from the

control characters are used to constrain the design of other letterforms.

The parts of each control character are illustrated in Figure 5b. As

seen in Chapter Two, a part can be defined as a set of composite properties that

that function together as an independent unit. Parts that contain shape attri-

Figure 5b

~1IOm)
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round height -o a bcd eg pq s

o width

round counterform
height

round counterform
width

round xheight and
baseline alignment

round left
sidebearing

round right
sidebearing

round curve axis

round thin stroke
weight

round thick stroke
weight

:o a bcd eg pq s

i a bcdegpqs

lo cdegq

o bp

Sa b c d e g p q s

y abcdegpqs

:abcdeghmnp
q s u Figure 5a (continued )
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square ascender height

square width

square counterform
height

square counterf arm
width

Il b d k I

h n u kx

zhzn u m

6 num

square left
sidebearing

square right
sidebearing

vertical stroke weight

h bi k1 m n pru
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alignment

square baseline
alignment

arch alignment

Jhi nm r
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w x z
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Figure 5a (continued)
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descender height

square/round width

square/round
counterform width

square xheight
alignment

-p-iq

a bdgq

Sbdgq

p ijmnqruvw
y z

oblique height
( xheight )

v width

v counterform height

v counterform width

oblique left and right
sidebearing

-w i m n ruwxz
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x y

M Wxy
square baseline
alignment

v stroke weight

Figure 5a
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butes and attribute values identical or nearly identical to those found in the

control characters can be directly derived. These parts are illustrated in Fig-

ure 5c on the next page. The remaining parts either do not exist in the initial

source subset or are created as modified source part primitives. Although they

share attributes and values in common with the control characters, they re-

quire more decision making to determine their actual contour shape boundaries

and design features. Letters are related to the control characters in the tree

illustrated in Figure 5d depending on their degree of similarity in shape or

structure, on the number and kind of decisions that need to be made to define

their shape attributes and values, and on the complexity of the graphic

operations used to create them.

Parts such as the xheight stem contain the same shape attributes as

those found in the ascender stem of h, that is, they are both straight strokes,

but their height values differ. Likewise, the slope and the thickness of the

oblique strokes of the w, x, and z differ from the v. These values cannot be

defined without knowing the overall width and design of each letter. The length,

and position of horizontal parts such as the crossbars are unknown given the

control characters. The slope and joining characteristics of the legs of the k

0 h p v

c n I b q d y w

e um r i f ga xz

jt s k

Figure 5d
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are completely undefined by any letter in the lower case alphabet.

Other parts are similar or stylistically consistent, but not identical, in

shape to the parts found in the control characters. Their sets of shape attri-

butes and/or their values differ. For example, the arch of the m can be derived

from the n; it has many of the same features such as the thin and thick stroke

weight, the top arch alignment value and the counterform height value, but its

curve gradation differs due to the fact that its width is condensed. Similarly,

parts of the c appear nearly identical to the o, but their actual curve gradation

is unknown due to the fact that the top is condensed and the bottom piece is

extended for visual balance. Whether or not the terminal angle is oblique or

horizontal is also not known given h, o, v, and p. This is also the case in f, a,

g, t, s, and y. There is no design information that can be used to determine the

slope of the s. The widths of f, j, t, and r are not given.

As more letterforms are created by the designer, unknown design fea-

tures, shape attributes, and values are defined. This information can be used to

create, or solve, other letterforms. For example, once the curvature of the

upper terminal of the f is designed, it can be mapped to t and j. Likewise a and

g share similar design features. Although there is no required order in which

FIVE
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letters are created, the pattern or sequence does constrain the "solution

space" or range and number of design problems that remain to be solved. A

path through the font is created from letter to letter as design decisions are

made and carried over.

An additional factor that may influence the order in which letters are

created is the need to view characters grouped together in words, phrases,

paragraphs, and control strings as soon as possible. This gives the designer an

idea of the texture and color of the text and its legibility. Figure 5e lists the

design attributes Matthew Carter studies in the control characters h, o, v, and

p. At the bottom of this list are two sets of letterforms Carter creates in ad-

dition based on a) the complexity of their structural form and b) their use or

frequency of appearance in text. With thirteen lower case letters and four up-

per case forms, Carter is able to visualize his design as seen in Figure 5f. Thus

a time element is involved.

Heuristics

The operations described below are general procedures that can be

used to create a set of rough sans serif letterforms from the control charac-
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outer sides/fit

stems

vertical proportions

straight
round
straight/round
oblique

h i m
0
v

p
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straight/round
oblique

a t s
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p
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Figure 5e
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Font 0669 Alisal - Version 2 Thu 13 Feb 1986 9:04 a.m.

OOHOHHHOOnOoOHnHoHoononnnooHH
AAAHAOARAaAbAeAgAhAiAmAnAoArAsAuAv

HAHHHOHRHaHbHeHgHhHiHmHnHoHrHsHuHv
OAOHOOOROaObOeOgOhOiOmOnOoOrOsOuOv
RARHRORRRaRbReRgRhRiRmRnRoRrRsRuRv
aAaHaOaRaaabaeagahaiamanaoarasauav
bAbHbobRbabbbebgbhbibmbnbobrbsbubv
eAeHeOeReaebeeegeheiemeneoereseuev
gAgHgOgRgagbgeggghgigmgngogrgsgugv
hAhHhohRhahbhehghhhihmhnhohrhshuhv
iAiHiOiRiaibieigihiiiminioirisiuiv
mAmHmOmRmambmemgmhmimmmnmomrmsmumv
nAnHnOnRnanbnengnhninmnnnonrnsnunv
oAoHoOoRoaoboeogohoiomonooorosouov

rArHrOrRrarbrergrhrirmrnrorrrsrurv
sAsHsOsRsasbsesgshsisnsnsosrsssusv
uAuHuOuRuaubueuguhuiumunuourusuuuv
vAvHvOvRvavbvevgvhvivmvnvovrvsvuvv

BITlWOCKY - an original composition by Regis McCarter

Amerigo roams murmurous seas his ambergris seahorses see
Rogue samurai as gruesome as a robber sagamore vamooses
Osage maharishi measures his massive samovar ambiguous
As sahib or memsahib rummage umbrageous Hamburg rooms agree
Our mauve irises gamboge mimosas brush a sham summerhouse
Rose shrubs high over grass submerge some bugs or grubs
Habsburg margrave goes overseas his bimbo houri huge bosom
Herbiverous moose grim beaver rare marabou bogus grebe arrive
Origami horseshoes embarrass our average vigorous greaser
Remember somber suburbia borough barbarism garbage horror
Ambushes mob messenger as sober shamus absorbs rough sourmash
A vague gossamer miasma hovers over morose Omaha reservoirs
Obsessive he hogs mushroom gumbo various sesame mousses give
Him serious regressive seborrhea rash his bum behavior ushers
Aggressive hearse remorse as grave rabies virus erases his visage

Amerigo roams murmurs sas his ambergri saho s

Rogue samuri as grusom as a robbr Sgaor a oe

O"Se maharishi meaures his masive samva ambiguous
As sahib or memshib mm~mag umbrageou Hamnburg roos agre
Our -av inises gamboge mimosas brush a sham ummehous
Ros shrubs high wvr gSs submerge some bugs o~r grubs
Hab -sr -agrav gS o'as his bimbo hour huge boso
Herbiveou mos grim beaver rarnarabou bogus grebe arive

Oigam horseshoes embarass ou aag vigrou gree
Remember somer suburbia borough barbarism garbage hor
Ambushes mo me-ssge as sober sham-s absobs rouh somsh

A vagur ssamr miasma h-vr ove m-rs Omaha resrvir
Obsesive he hos mushoo gumbo vaiu seam -,use gi-e
Hi. serious regressv seborrhea rash his bum behavior ushers

Agressie herse reo as i'av rabies virus er-e his viage

AHORabe ghimnorsuv
Figure 5f
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ters h, o, v, and p. Related letters can be generated through a series of trans-

formations. Each transformation consists of a set of operations applied to a

source letterform or part to derive a destination character. These opera-

tions differ in number and kind depending on the degree of similarity between

two forms. Letters can derive shape information from multiple sources or

from a single source letterform. In addition, each letter can contain its own

"slots" of information.

As seen in the preceeding discussion, some letters can be more expli-

citly described in relation to the control characters than others. Therefore

these procedures vary in their degree of specificity. They do not represent

practices employed by each and every designer nor can they be used to

generate a final set of letter drawings.

Letters such as q, b, and d and n and I are relatively easy to solve.

Most of their attribute information is given and in sans serif faces their forms

will not tend to vary greatlly from the control character shapes. Q can be cre-

ated by duplicating the descender shape in p and inverting the bowl. B and d

contain the ascender stem of h, as does 1. ( See Figure 5g ) Common varia-

tions of the b form are shown in Figure 5h. As mentioned, the height of the

pqg

Figure 5g

b bb

Figure 5h
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xheight stems can be determined using the square xheight alignment value found

in p or v for n and i. The dot shape of i and j are generally round or rectangular

shapes and are top aligned at the ascender alignment height.

U contains parts found in the n but they are rotated 180 degrees.

(See Figure 5i) Its shape will generally not be exactly identical to the n due to

its orientation and visual balance. An alternate u form is shown in Figure 5j.

An initial form of m can be generated by modifying the n arch width. Although

their curvature and stroke weight appear related there are subtle differences

in their final form. Attention must also be paid to the joining characteristics of

the two arches. In addition, the vertical stem weights of m will tend to be

thinned to appear visually consistent. R can be created by modelling the n arch

curvature, but in Helvetica its shape is based on b. The terminal shape of r

needs to be determined as does its width. R's tend to vary in sans serif faces

more often than n and u. (See Figure 5k)

As seen, the c can be created from the o, but decisions are required to

define its curvature, its width, and the length and characteristics of its termi-

nal endings. ( See Figure 51) The top right shape of e will tend to be extended

slightly in comparison to the c to join the crossbar. The bottom terminal of e

Ih

m

U

Figure 5i

Figure 5j

rrf r r
Figure 5k

C Cc
Figure 51
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the bottom portion of the g can vary although it tends to be visually related to

the a hat. The bowl of the g is generally condensed in the vertical direction due

to the presence of the tail and the visual complexity of its design.

F, j, and t often have related terminal features. ( See Figure 5s ) Fig-

ure 5t shows an exception in the typeface Futura. Generally f and t are similar

in width. Their horizontal crossbars are aligned at the xheight square align-

ment and they will be identical or nearly identical in thickness to the crossbar

in e.

The oblique letter category contains the most differentiated shapes.

V, y, and w are related in structure. The y can be created by extending the

right stroke of v, although its terminal shape is undefined. ( See Figure 5u)

The w can be treated as two v forms that are joined, although its strokes are

more oblique and therefore thinner in width. ( See Figure 5v) X can be created

by determining the slope of its legs in relation to its overall width. Its stroke

weight is also a function of slope. The bottom legs of the x will generally

extend beyond the top arms for balance. The slope of the diagonal stroke in z

can also be defined in relation to the letter width. Its horizontal stroke weights

are known, although its join shaping can vary. ( Figure 5w )

JI
Figure 5s

abcdefghijklmnopqrstuvwxyz

Figure 5t

~y.y yy
Figure 5u

Figure 5v

z~z
72 Figure 5w
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will appear visually similar to c although it may be extended further to the

right due to its visual interaction with the crossbar. ( See Figure 5m ) The

height of the crossbar can vary and its slope can change. Although s is a round

letter, it is often more related to the a in its top and bottom curvature, its

bowl forms, and its stroke weights in faces where a double story a is present.

( See Figure 5n ) The slope of the diagonal is s differs from typeface to type-

face and differs in light and bold faces. ( See Figure 5o ) The bottom stroke of

s will tend to be extended to the left and the top stroke will be indented for

visual balance. Generally, the top bowl shape will be smaller or more con-

densed than the bottom bowl shape.

The two common forms of a are shown in Figure 5p. Single story a's

can be derived from q. Double story a's are related to d in structure, but are

highly variable in shape. Although its top hat shape may model o, there are few

constraints on its curvature. The bowl form is unpredictable as are its termi-

nal endings given h, o, v, and p. (See Figure 5q) There are also two common

forms of g. ( See Figure 5r ) However, in sans serif faces, the former is more

prevalent. This g form can be partially determined using the q but its descend-

er stem depth and the shape of its bottom curve are not known. The shape of

oH-4-Ec--J*
Figure 5m

a.7s
Figure 5n

s S
Figure 5o

aa8
Figure 5p

a
Figure 5q

gg
71 Figure 5r

a a
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The system presented in this thesis is a tool for digital typeface de-

sign. As such, it is intended to be used to create new typeface images. Like

other design systems, it provides interactive tools and a visual design environ-

ment. The designer works directly in graphic mode to create and modify let-

terforms. Letters can be interactively edited and viewed on more than one

level. Contour curves can be altered and parts can be translated, inverted, re-

flected, aligned, and joined to form higher level part groups. The display

screen is divided into several areas for proofing and comparing letters indi-

vidually and in text strings.

At the same time, this system is also an attempt to integrate auto-

mation into the design process. Software is used to automatically derive let-

terforms and to propagate design changes. However, the task of automating the

derivation process is compounded by the diversity of typeface styles and font

dependent variables. Therefore a highly regular and small set of letter shapes

was tested in order to determine representations and operations useful for

automating the initial construction of letterforms and for generating a set of

consistent designs. H, n, u, and m were chosen because they contain sets of

repeating primitives that differ in orientation, alignment, shape, and size. H is 73
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the control character used to derive n, u, m, i, and I. With the addition of p,

the letters b, d, and q can also be created. The control character images are

from the typeface Bell Centennial designed by Matthew Carter. (See Figure

6a)

Representation

Letterforms are represented, at the lowest level, as discrete point

coordinates which, when connected with cubic spline curve segments, describe

the contour boundaries of each letter shape. Outline representation was chosen

because it provides a means of reproducing the subtle and complex curves that

characterize most typeface designs, and because it is relatively easy to per-

form geometric transformations such as scaling, rotation, and translation at

varying resolutions. Outlines do not, however, adequately represent letter-

form structure. In order to create letters as built forms, it is necessary to

extrapolate or define, at a higher level, their topological features. These fea-

tures include the structural components or parts, their means of combination,

and their spatial configuration.

The parts of each letter were identified in Chapter Two. They are

ohpv
Figure 6a
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treated as modular and connected primitives that function as building blocks.

Part attributes describe the position, orientation, slope, alignment, size, and

shape of each part. Letter attributes define the position, orientation, align-

ment, size, and shape geometry of each part configuration. The shape attri-

butes of parts and letters are defined by their contour edges. Part contours

can be subdivided into individual edges or sets of edges in order to reference a

particular feature such as a join or to manipulate a design attribute such as

height or stroke weight. Similarly, parts can be grouped together to form

higher level structural units that are duplicated in exact or slightly modified

fashion in structurally related letters.

Each part is classified according to its type and associated with a set

of shape specifications and procedures used to generate its contour description.

Part objects are stored in a part library organized into part type classes and

subclasses and letter objects are stored in a letterform library consisting of

letter classes. Parts are copied, manipulated, or created by the computer to

generate and build each letterform. Letters are constructed with the use of

rules and procedures that specify each component part type and its position,

orientation, and alignment within each letter. Part shape outlines are joined 75
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and recontoured.

Letterform Generation and Propagation

The control characters contain the initial source attributes and values

used to constrain the design of other letterforms. Characters such as h and I

that contain identical part shape attributes can be created with duplicate part

objects. Other letters such as b, d, and q contain identical or similar bowl

shapes that differ in orientation. These parts can be copied and rotated or in-

verted to create each letter. To modify the shape, curve gradation, and size of

existing parts, contour edge features need to be manipulated. These features

include the curve slope and size descriptors. For example, to generate the arch

of an m the n arch can be manipulated by scaling its top and bottom curve con-

tour edges in x independently of one another. These two edges are modified

independently in order to maintain their width relationship when they are joined

with the right stem. Therefore, when altering or creating part objects, con-

straints on certain design features have to be satisfied in order to derive con-

sistent deigns.

To create part shapes that are not defined by the designer, contour
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edge descriptions must be generated. This requires more explicit attribute

representation and a complete set of shape specifications and procedures. For

example, the slope of the oblique strokes of an x may be specified by determin-

ing x's width. Its stroke weights can be defined as a function of the oblique to

vertical stroke thickness ratio. Therefore, with each new design of the control

characters, a unique x will be created. Creating these parts has not been

tested in this software.

In the current implementation what can be referred to as "one way"

letter transformations are implemented. In other words, procedures have been

written to modify an existing n or h arch to create an m but not to generate an

n or h given an m. These procedures could be referred to as "two way" trans-

formations and, to extend the system's versatility, they could be included. At

present, the order in which letters are created can, and does, influence the

generation process.

Rather than editing each shape graphically or in a program, the design-

er can automatically propagate changes to part and letter contours throughout a

font to all letters that contain like parts or to user specified letters. Thus

curve relationships can be recreated. Changes can also remain local to the ed- 77
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ited letter, thereby preserving the inherent nonuniformity of repeating part

primitives.
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The software package described in this Chapter is called "abcdefg"

(pronounced ab-kuh-def-gee ), or "a better constraint driven environment

for font generation". Although it is not truly a constraint driven system to

date, constraint representation software has been written by Rick Poyner, an

undergraduate student working on this project. The abcdefg package represents

a testbed and provides a foundation for the future integration of Rick's work.

All demonstration software is written in the C language.

Hardware Environment

Abcdefg was developed on an IBM XT personal computer with 512 k of

core memory and two 10 megabyte hard disks running under the MS-DOS oper-

ating system. The display unit includes a high resolution red, green, and blue

color monitor and an experimental graphics board that supports an 8-bit frame

buffer with a visible area of 640 x 480 pixels and an invisible area of 640 x

336 pixels and graphics functions. The display architecture is called YODA and

was developed by IBM. The primary input device is an optical mouse with three

buttons.
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Screen Layout

The screen space is divided into four working areas and one area

devoted to menu display. ( See Figure 7a) In the central area, a 360 x 360

pixel area called the Em Square is provided for creating and manipulating letter

shape images at large sizes. Four vertical alignment lines are displayed in the

Em Square: the descender line, the baseline, the xheight line, and the ascender

line. The left and right side bearing lines are also displayed. The Scaled Letter

space is a 90 x 90 pixel area used to display a scaled version of the current

letter or part being created or edited in the Em Square. This letter is displayed

at one quarter of its original size. The Text area along the bottom of the Em

Square is an additional viewing space provided for scaled text input. This space

is 230 x 94 pixels. The space labelled View is used to display part and letter

libraries. Part and letter library images are also scaled to one quarter of their

original size. The View space is a 182 x 365 area.

User Interface

The user can freely move to any area of the screen and view and

edit letter images on several levels as mentioned. Three working modes are

EXIT ' v

= liea leve

Figure 7a
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available. They are: the interactive mode, the automatic mode, and the prop-

agation mode. Modes are selected using a pop up menu that is displayed at the

cursor location. A flow chart is shown in Figure 7b.

Interactive Mode:

In interactive mode, letterforms are created and edited graphically

and can be viewed on all levels of the letter primitive hierarchy within the Em

Square. Curve points can be moved, aligned, inserted, and deleted, spline

curve segments can be interactively modified, and parts, part groups, and

letterforms can be scaled, moved, inverted, and rotated. Individual parts can

be aligned and joined. These techniques model traditional cut and paste prac-

tices. The default mode allows the user to directly select and move displayed

level objects. Selected objects are highlighted. All editing and creating func-

tions are performed with the middle mouse button.

Level changes are made by selecting the level at which objects are to

be displayed. This is accomplished by toggling the level tag situated along the

top of the Em Square area. The switch is toggled using the left and right, or up

and down, mouse buttons respectively. (See Figure 7c) As the levels change, 81

Interactive
Mode

Automatic

Mode'"td.....I
Pren

Figure 7b

1 2 3

Up Select Down

Mouse Buttons

Figure 7c
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points, curve segments, part, part group, and letter images are displayed along

with the appropriate set of menu buttons listing the tools available at each

level. To change functions, the user simply selects the desired menu buttons.

Menu buttons are highlighted to ensure proper visual feedback. Menu functions

are selected using the middle mouse button.

At any time during the editing or creating of objects, a scaled version

of the active image can be displayed. This scaled image is updated when the

user moves the cursor into the Scaled Letter area and presses the middle

mouse button. This image is positioned within the Scaled Area relative to the

origin point of the box to correspond to the position of the large image in the Em

Square. (See Figure 7d )

Text is input by moving the cursor into the Text space and also press-

ing the middle mouse button. Letters are displayed as the user types at the

keyboard. Each letter is properly spaced within its given set width.

Part and letter library images are displayed in the View area of the

screen. Letters are listed in alphabetical order, and parts are organized ac-

cording to type. Alternate versions of the same part or letter are displayed

together. As each new letter or part is created, image libraries are automa-

hnopuv
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Figure 7d
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tically updated and displayed. As in the Em Square, the user toggles a level tag

situated along the upper right edge of the View space with the middle mouse

button to alternate between part and letter libraries. Library images can be

selected for editing and propagation.

Side bearing and vertical alignment lines can be interactively moved.

Automatic Mode:

In automatic mode the user selects letters to be generated. As each

letter is created, it is displayed in the View area where it can be selected for

editing. Automatic processes are discussed below.

Propagation Mode:

Propagation of changes to curve contours can proceed globally to all

letters that contain duplicates of the modified part or to user specified letters.

To propagate a change globally, the global button is selected on the pop up menu.

User specified letters are selected from existing designs displayed in the letter

library. As changes are made, each letter and/or new part is displayed in the

View area. 83
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Data Structures

Letterforms:

Each individual letterform is stored as a data structure that contains a

list of pointers to its part instances and a pointer to the list of spline curve

points that describe its contour shape, called an object list or object. ( See

objects ) ( See Figure 7e ) In addition, the height, width, top and bottom align-

ment values, and left and right sidebearings are stored.

struct -letters
{

struct _parts
struct _objects
int
int
int

}

*partlist;
*object;
height, width;
top-align, bottom_align;
left_ sidebearing,
right sidebearing;

Parts:

The part structure also contains an object pointer to its list of contour

curve points. In addition a type or name variable that corresponds to the class

the part belongs to is stored along with height, width, orientation, rotation, top

letter -* object

part -- part -- a part..

object

ring --- ring

cell -- o cell -- cell

point

Figure 7e
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and bottom alignment, and origin x and y attribute variables. A master part

pointer is also stored. ( Master parts are explained in the section entitled De-

fining Parts )

struct _parts
{

struct _parts *masterpart;
struct _objects *object;
int type;
int height, width;
int orientation, rotation;
int top align, bottomalign;
int origin-x, onginy;

}

Objects:

Each part and letter structure contains a pointer to an object. An ob-

ject is one or more two way linked lists of cubic spline curve control points

used to draw the spline curve contour boundary of each part or letter. Each list

is called a ring. Letters such as n have one ring or one continuous edge; letters

such as b have two rings, one used to enclose the inner counterform and one to

enclose the outer edge. Rings are lists of cells. A cell stores a pointer to a

point coordinate structure called a point. Ring, cell, and point structures are
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briefly described below. Most of the operations performed on parts and let-

ters, in this software, are operations on object lists.

struct _objects
{

struct _rings
int

int
int

*ring[2];
numrings;

offset_x, offset_y;
extent_x, extenty;

The ring structure contains a pointer to the first cell in the curve point

list and the number of cells in the list.

struct rings
{

struct _cells
int

*firstcell;
numcells;
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Cells:

A cell contains a next and previous pointer and a pointer to a point

structure.

struct -cells

struct _points
struct _cells

}

*point;
*next, *previous;

The point structure is used to store the x and y point coordinates and

the type of control point. There are two possible control point types: straight

and curved. The structure also contains a crd flag used to indicate whether or

not the coordinates are absolute or relative, an ifchanged flag used to deter-

mine if a coordinate has been changed, and an ifjoined flag used during the let-

ter construction process.

struct _points
{

int
char
int

coord_x, coord_y;
type;
crd_flag;

SEVEN
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int if-changed, ifjoined;
I

Letter Library:

Class: h
The letter library is used to store all letter images. It is organized

Instance: this h

into classes and instances. Theoretically, there would be a letter class for

each different letter in a font or typeface but in this software there are only

eleven: h, n, u, m, i, I, p, d, b, and q. Each letter class contains letter in-

stances, or different versions of a letter that the designer makes and wants to

save temporarily. ( See Figure 7f) Figure 7f

struct _letterlibrary
{

struct letterclasses h_class, n class, m class, uclass,
i-class, Iclass, pclass, d-class,
b_class, q_class;

}

Letter Classes:

Each letter class structure has a pointer to its list of letters and a

number of letters variable.
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struct _letterclasses
{

struct _letters *letterlist;
int numletters;

I

Part Library:

The part library is organized into master part classes, subclasses, and

instances. Three class structures are explicitly stored: the stem class, the

bowl class and the arch class. These correspond to the part primitive families

or part types discussed in Chapter Two. Each subclass represents a particular

kind of bowl, stem, or arch. For instance, there is a subclass of ascender

stems and a subclass of xheight stems within the stem class. The ascender

stem class contains all ascender stem master part instances. Parts stored in

the library are master parts. ( See Figure 7g)

struct _partlibrary
I

struct _partclasses stem, bowl, arch; Figure 7g
}

Class: Stem
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Part Classes:

Each part class data structure contains an array of pointers to part

subclass data structures and its number of subclasses.

struct _partclasses
{

struct _partsubclasses
int

}

*subclass[1 0]
subclass_number;

Part Subclasses:

A part subclass data structure stores a pointer to a list of master

parts, the number of master parts, and a name variable.

struct _partsubclasses

struct _parts
int
int

}

*masterpartlist;
name;
masterpart number;

Vertical Alignments:

The square, round, and arch alignment letter values are stored in the
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following data structure. These values are referenced when positioning parts

and letters.

struct _alignments
{

int ascendersquare, ascenderround;
int xheight square, xheight round,

xheight arch;
int baselinesquare, baselineround,

baselinearch;
int descender square,

descenderround;
}

Sidebearings:

Square, round, and oblique letter sidebearing values are stored. Each

letter can also have its own left and right sidebearing values.

struct _sidebearings
{

int square sidebearing,
roundsidebearing,
oblique sidebearing;

}
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Driver Program

The driver program is the main control loop. It is used to determine

and maintain the current cursor location and state, the current workspace, the

current object, the current working mode, the current tool, and the current

working levels in the View and Em Square workspaces.

Creating Letterforms

The system provides standard outline generation tools for creating

letter shapes. These tools include techniques for marking cubic spline curve

control points along the contour edge of each letter image. To create a letter,

the user interactively selects points on the screen. ( See Figure 7h ) These

points are inserted into an object list. There are two possible spline point

types: straight and curved. When a point is created, a straight or curved point

marker is displayed. Once the points are entered, an object can be drawn on

the screen as an entire closed contour or individual curve segments can be

drawn or erased. A sample letter h is shown in Figure 7i. The spline curves

pass directly through the straight and curved point markers thus facilitating

visualization and ease of curve manipulation. Entered points are edited until the

EMSQUARE poi

Figure 7h

Figure 7i
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character shape appears correct.

An alternate method of creating the control characters allows the de-

signer to draw part primitives, position and align them in relation to one

another, and recontour them to form higher level structural units or letters.

When a letterform is saved, its height, width, and left and right side-

bearing values are calculated. Letter and part objects exist within an imagin-

ary box that extends from the lower left origin point to the upper right coordi-

nate. Contour points are stored relative to the x and y origin. Each letterform

is then stored as a set of part primitives. Stored letters can be saved in files

and loaded from files. The original set of control characters from the Bell

Centennial Typeface were input with these tools. Figure 7j

Defining Parts

Due to the fact that this software does not include feature recognition

tools that could be used to extrapolate a letter's parts given its contour shape,

the user interactively specifies part boundaries. ( See Figure 7j) To define a

letter's parts, control points that delimit vertical, horizontal, curved, and

oblique shape primitives are selected. These primitives must correspond to the 93
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parts specified by the system to construct other letterforms during the auto-

matic construction process. At present, these points must lie along a horizon-

tal or vertical part boundary in order to facilitate proper recontouring once the

pieces are joined together. After the part boundaries are specified, software

is used to break up each letter contour list into part object instances.

These parts are stored in the part library as master parts. Master

parts are copied by the computer and used to create other letterforms. They

are permanent data records and cannot be altered, although they may be deleted

from the library by the system or by the user. Part instances used to create

letters automatically are copied from master parts. These instances are inde-

pendent data objects, i.e. the xheight stems used to build the n and u are not the

same object. This is because the designer may wish to modify the u stem and

not the n.

Editing Letterforms

As mentioned, letterforms can be interactively manipulated on all

levels of the object hierarchy. Objects to be edited are first selected and then

altered.
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Points

Insert Point:

Delete Point:

Edit Type:

Move Point:

Align Point:

Lines

Move:

Parts

Move:

Scale:

Align:

Rotate:

Insert point on a contour edge between two selected points.

Delete a point.

Change the type of point from square to round or vice versa.

Interactively move a selected point on the screen.

Points can be aligned to one another in x or y or can be

aligned to a selected vertical alignment line.

Interactively manipulate a spline curve segment by selecting

a curve point and moving it.

Interactively translate a part on the screen.

Scale an object in x and/or y.

Align two parts in relation to one another. Parts can be left,

right, top, and bottom aligned.

Rotate an object by a given angle.
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Mirror: Invert a part horizontally or vertically.

Join: Two selected parts can be joined to one another in x or y and

recontoured to form a single part or part group.

Part group and letter manipulation functions are the same as those used to

manipulate parts.

Automatic Letter Generation

To automatically generate a letterform, the following basic procedure

is used. Within each letter function, the type of each component part is pre-

specified. Instance copies of the letter's appropriate master parts are made by

the part manager. These part instances are rotated and/or inverted to their

proper orientation and sent to the letter construction procedure where they are

positioned and joined. ( See Figure 7k ) If the correct master parts do not

exist, they are created by the part manager. For example, to create an n, an

xheight stem is needed. If the xheight stem does not exist in the library, the

part manager copies the ascender stem master part and it is scaled to produce

the xheight stem. This new part is sent to the master part library and copied,

along with the arch and right short stem, to create the n. ( See Figure 71)

Figure 7k

part library

copy part

modify part

Figure 71
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Currently, if a part cannot be created given the existing set of source parts,

the user is asked to make it. A sample n and u are reproduced in Figure 7m.

The part manager calls all of the procedures that are used to gen-

erate and modify parts and maintains all derivation and propagation data. This

data includes information that specifies all source and destination letters and

parts. To date, the procedures include operations to create the xheight stem

and the arch of the m and rotation procedures to create the d and q.

Automatic Letter Construction

To build a letterform, part primitives are aligned and positioned in re-

lation to one another and joined. Part and part group objects can be left, right,

top, and bottom aligned, individually moved to a round, square, arch or apex y

alignment value, or horizontally aligned in relation to a left or right side bear-

ing. To join two parts, one object is positioned to the left, right, top, or bot-

tom of another object and together they are recontoured to form a higher level

structural unit. Parts are joined together until a complete letter is formed.

The part configuration, or letter, is then positioned horizontally in relation to

the left side bearing and vertically aligned. The right side bearing value is then 97

EM SOuARB -

EM SQtARE - 1n

Figure 7m
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assigned and the letter is displayed at scaled size in the View area of the

screen.

For example, to create an n, its arch and left right stem are left a-

ligned. The arch is then positioned on top of the right stem and these two parts

are joined. This part group is then positioned to the right of the left stem and

joined to it to form the n. Therefore, each letter schema contains a pre-defined

set of procedures and expects to be sent the correct set of parts.

The recontouring procedures create a single object list of contour

points by appending two part object lists. One procedure is used to join two

objects in x, or a left and right object; the other procedure is used to join two

objects in y, or a top and bottom object. These procedures are called Obj-

GlueX and ObjGlueY and they are described in the Appendix. This new list is

a display list that contains pointers to the point structures of each part object.

Therefore, when the user edits the constructed letterform contour, part coord-

inates are automatically updated. This technique was used to facilitate change

propagation to part contours.

SEVEN



SOFTWARE DESIGN AND IMPLEMENTATION

Propagating Changes to Letters

As mentioned, when a given letterform is edited, changes to its part

contours are automatically made. If a part shape has been changed, it becomes

a new part instance and it is copied to the master part library. To propagate a

change, the new master part is copied and sent to the construction procedure of

each letter to be updated. The letters are rebuilt using the substituted part(s).

( See Figure 7n ) Changes in the curvature of the n arch are illustrated in Fi-

gure 7o. These changes are automatically updated to the u shown in Figure 7p.

The part manager maintains records of all derivation and propagation paths, i.e.

all source and destination letters and parts, and performs all substitution func-

tions.

edit letter

|update parts

create new master parts

copy master parts|

reconstruct letters to be changed

Figure 7n

Figure 70

99 Figure 7p
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The software presented in the preceeding Chapter can be used to gen-

erate letterforms from a subset of character shapes. These character shapes

are created by the designer and stored as part primitives that are copied and

manipulated by the computer to construct other letterforms. With the use of

procedures, parts are rotated or inverted, aligned, and positioned in relation to

one another. Rules are used to constrain their horizontal and vertical alignment

and rotation or inversion values. In addition, each letter can have its own value

slots. In the current implementation of abcdefg, the part manager can duplicate

part shapes and modify them. However, to date, these modifications are limit-

ed to altering the height of vertical stems and the width of arches. More com-

plex shape manipulation procedures need to be tested.

While this schema is useful for constructing letters given a set of part

shapes created by the designer or manipulated by the system, the actual gener-

ation of shape contours by the computer requires further investigation. At the

lowest level, contour points must be plotted in a stylistically consistent fa-

shion. At a higher level, design attributes such as the thickness of strokes and

their alignment and height values need to be constrained. And, at a higher level
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still, the attributes of shapes must be specified. In short, the system must

know not only how to draw the shape but what to draw. [Montalvo 1985]

Interesting work is being done in this area by Montalvo. Montalvo is

developing a declarative model of shape attribute representation. Her goal is to

use this model to recognize, manipulate, and generate visual objects. In Mon-

talvo's scheme, objects are represented as sets of low level visual properties

that are related to one another to form higher level symbolic descriptions.

"The recognition and generation of visual objects from symbolic descriptions

are two sides of the same coin." [ Montalvo 1985 ] With the use of Montal-

vo's vocabulary, diagrammatic conversations can be established between the

computer and the user. Whether or not this vocabulary will ultimately be

applicable to generating complex shapes such as letterforms remains to be

seen.

In the domain of analog to digital font conversion, the recognition/gra-

phics problem is being addressed at Bitstream, Inc. in Cambridge, Massachu-

setts. As noted in Chapter Four, significant design features of each letter are

represented by an underlying grid or pattern that corresponds to areas of the

shape, called zones, that are to be constrained in relation to other letters. Zone 101
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representation can be used to model varying contour curve shapes and to mani-

pulate the design features within each letter independently of one another. Zone

patterns are stored for each typeface. Although in its current implementation

zone areas are specified by the user, work is proceeding towards automating

the recognition of one dimensional features, or edges, and two dimensional

shapes such as parts. If reversed and applied to font generation, zone patterns

could be automatically created for each letter. Unknown shapes can be defined

in relation to existing letter zone descriptions in another typeface or within the

font itself.

Within the specific context of this thesis investigation, one solution to

the lack of design information that can be applied to the derivation of letter-

forms is to expand the initial source subset of letters to include all or more of

the basic part primitives with which letters can be created. Another possibil-

ity is to store pre-defined primitives and manipulate their shape in relation to

the control characters created by the designer.

The addition of feature recognition software to the abcdefg package

would be beneficial for automating the derivation process. At present, primi-

tive procedures are used to reference contour points when modifications are 102
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made. Individual contour edges or curve segments cannot be located easily.

Parts are defined by the user. Most important, however, is the fact that shape

attribute information cannot be extrapolated from the control characters with-

out the intervention of the designer. Widths, heights, and alignments are

known, but design features such as the curve axis cannot be found. If the goal

is to reduce the need for shape specification, feature recognition coupled with a

generative grammar or procedures and a descriptive vocabulary could be

useful.

The constraint representation software to be used in the abcdefg pack-

age is a highly simplified version of a constraint system. Boxes and wires can

be created and used to constrain defined objects or values such as set widths,

alignments, and stroke weights and to propagate value changes. In an ideal

design environment, a network of two way constraints among all letter attri-

butes and values could be implemented to both derive and propagate design in-

formation, thereby allowing the designer to begin with his own chosen set of

control characters, to modify letters at any decision node in the tree, and to

establish his own design relationships.
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Function Description Glossary

cellp
cpmp
cursx

cursy

EMSQ
INV EM SQ

invis
level

objarrayp
objectp
pmd

pmd_name
pmdatap
ppmp
rcursx

rcursy

ringp
sbp
SCALED
seenarrayp

TEXT
VIEW
valp

Cell pointer.
Child pmdata pointer.
Current cursor x coordinate, in the vis coordinate
system.
Current cursor y coordinate, in the vis coordinate
system.
Name of the EMSQ workspace area.
In contrast to the EMSQ which is a workspace, the
INVEMSQ is a pmd. It lives in the invisible frame
buffer.
Invisible frame buffer.
Refers to the level of a letter that is being operated on
or displayed.
Object array pointer.
Object pointer.
YODA pixel map data structure. Pmd's are rectangular
pixel map display areas in both the visible and invisible
frame buffers.
A pointer to a YODA pmd.
Pmdata pointer.
Parent pmdata pointer.
The cursx coordinate recalculated relative to a
workspace area.
The cursy coordinate recalculated relative to a
workspace area.
Ring pointer.
Sdbear pointer.
Name of the SCALED workspace area.
Object array pointer. This is an array of objects
visible in the EMSQ workspace area.
Name of the TEXT workspace area.
Name of the VIEW workspace area.
Valign pointer. 121
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vis Visible frame buffer.
wkspp Workspace pointer.
workmode Refers to the working mode: create, generate,

propagate, proof.
workspace A working area of the screen. ( See section on

workspaces under the Screen Functions heading.)

Main Program

The main program is used for initialization of the display and video lookup table,
YODA fonts, the INVEMSQ, and control character part structures. The
Drivero program is then called. When control is returned from the Drivero,
main calls a cleanup function to close all YODA fonts.

Driver

int Drivero ndriver4.c
arguments: none

The driver program is the main control loop. It is used to
determine and maintain the current cursor location and state,
the current workspace, the current object, the current
workmode, the current tool, and the current working levels in
the VIEW and EMSQ workspaces.

This function first tests to see if a mouse button has been
pressed. If so, it determines the current workspace. If the
middle button is pressed, select an object or tool; else if the
first or third button is pressed, change levels in the VIEW
workspace or in the EMSQ workspace. The first button 122
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switches down a level; the third button switches up a level.

Level Down Select Level Up

Selection Functions

int WkspSelect() ndriver4.c
arguments: cursx, cursy

Returns the current workspace.

int CpmSelecto ndriver4.c
arguments: currentworkspace, rcursx, rcursy

Returns the current cpm.

int SelectInito ndriver4.c
arguments: cursx, cursy, current workspace,

current workmode

Recalculates the cursor coordinates relative to the
currentworkspace. Calls object and tool selection functions,
and calls ToolExecuteo.

int Levelinito ndriver4.c
arguments: currentworkspace, mousebutton, currentlevel,

cursx, cursy

Determines if the level has been changed in the VIEW or EMSQ
workspace. Initializes the new level and returns the current 123
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level.

int LevelDispo ndriver4.c
arguments: current workspace, levelup_or_leveldown

Displays the new level label. If the level change is in the EMSQ
workspace, displays the current level of the object, i.e. its
parts, lines, or points. If the level change has occured in the
VIEW workspace, calls the library display function.

int ToolSelecto ndriver4.c
arguments: rcursx, rcursy

Tool selection function. Initializes the current tool. Calls
ToolHlto to highlight the selected tool.

int ToolHitO ndriver4.c
arguments: currenttool

Highlights the currenttool.

int ToolExecuteo ndriver4.c
arguments: currenttool, currentworkmode, currentlevel

Given the currentworkmode and currentlevel, calls the
appropriate object editing or creating function.
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Screen Objects and Functions

Workspaces

The screen is divided into six working areas called workspaces. Each
workspace is stored as an individual data structure that contains pointers to
structures called _pm.data structures. A _pmdata structure contains the
screen objects within each workspace area. There are two types of _pm data
pointer names stored with each workspace. Parent _pm data pointers, called
ppm, and an array of children _pm data pointers, called cpm. The parent
pmdata structure contains all the information associated with the

workspace, and the children _pm data structures contain all the information
associated with any pixel maps located within a workspace. Each _pmdata
structure contains pointers to 2 Yoda pixel maps, a parent pmd-name and the
pmdname associated with the _pmdata structure itself. For example, the
parent pmd name for the EMSQ workspace is "&vis". Other _pm data
structure information includes pixel map dimensions, display color, highlight
display color, text label strings, and the current x and y display starting point
for text strings.

Workspace pointers are stored as an array. Array indices are named. These
names are used throughout these appendices to refer to workspaces.

0 EM SQ
1 VIEW
2 TEXT
3 SCALED
4 CONTOLS
5 TOOLS

Each workspace area is labelled on the screen. Label names are:
"EM SQUARE", "VIEW', "TEXT", "SCALED", and "TOOLS".
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EM_SQ workspace:

The EM_SQ workspace is the area in which full-size letters and letter primitive
objects are created and edited. It is a 360 x 360 pixel area. Four vertical
alignment lines are displayed in the EMSQ: the descender line, baseline,
xheight line, and ascender line. Two side bearing lines are also displayed: a
right side bearing and a left side bearing.

There is one cpm pixel map in the EM_SQ workspace. This is situated at the
upper right corner of the workspace area. It is used to change letter object
levels. There are five labels associated with this cpm. They are: "points",
"lines", "parts", "partgroups", and "letterforms".

VIEW workspace:

The VIEW workspace is used to display part and letter libraries. Parts and
letters are scaled to one quarter of their original size for display. Part and
letter objects are displayed in horizontal rows.

This workspace contains one cpm area. This is situated at the upper right
corner of the VIEW workspace. It is used to display libraries and to switch
between part and letter libraries. There are two labels associated with this
area. They are "parts" and "letterforms".

A copy of the EMSQ pmd is stored in the invisible frame buffer and used for
BitBIt purposes. This is a pmd, not a workspace, called INVEMSQ.

TEXT workspace:

The TEXT workspace is used to display scaled letters in text strings. The
scaled letters are one quarter of their full size.

There are no cpm's in this workspace. 126
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SCALED workspace:

The SCALED workspace is used to display a scaled version ot the current letter
or part object being displayed, created, or edited in the EMSQ workspace.
This letter is dispalyed at one quarter of its full size.

There are no cpm's in this workspace.

CONTROLS workspace:

This workspace area is not used.

TOOLS workspace:

The TOOL workspace is used for displaying available tools and functions for
creating and modifying letter objects and primitives. These tools are displayed
as menu buttons in a long vertical column.

Thirteen tool buttons can be displayed., i.e. there are 13 cpm's associated with
this area.

Workspace Structure

typedef struct _wk-space
int
pmdata
pmdata
int

PixelMapData Structure
typedef struct _pm data

*wk space
name;
ppm;
cpm[13];
cpmnum;

/* Not Yoda
*pmdata;

/*parent pmdata*/
/*children pmdata*/

Pixel Map Structure */
127



*name, pname;
origx, origy, ux, uy, extx, exty;
height, width;
color;
highlightflag;
highlight color;
*Iabel[6];
labelnum;
curlabnum;
curptx, curpt_y; /* for text */

Workspace Functions

WSAllocAIlPtrsO
arguments: none

screen02.c

Allocates and initializes all wkspp's, ppmp's, cpmp's, valp's and
sbp's.

PmInitAll() screen02.c
arguments: none

Specifies all data for all workspace _pm data structures.

Pmlnit(
arguments:

screen02.c
pmdatap, pmd name, origin x, originy, extent-x,
extent_y, color, if-highlighted, highlightcolor,
if active

Initializes all data in a pmdata structure.
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pmd
int
int
int
int
int
char
int
int
dblcoord
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screen02.cLabinitAll()
arguments: none

Initializes all labels and label current points.

LabDisplayo screen02.c
arguments: pmdatap, curlabelnum, fontcontrolblock, color,

pmd name

Displays a text label.

screen02.cDisplayAll()
arguments: none

Displays all screen pmd's, vertical alignment lines, side bearing
lines, and text labels.

screen02.c

screen02.c
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PmdCreate(
arguments: pmdatap

Creates a YODA pmd.

PmdDisplay(
arguments: pmdatap

Displays a YODA pmd.

ClearEmo
arguments: none
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Clears the EMSQ screen area and redraws alignment and side
bearing lines.

InvEmRestoreo
arguments: none

mmvsppt08..c

Clears the INVEMSQ pmd and redraws all alignment and side
bearing lines.

Vertical Alignment Line Display Structure

struct _v-align
int

int
int
int
pmd
int
int

* v_align
origx, origy, endx, endy, extx,
exty;
width;
yoffset;
color;
*pm d_name;
if_highlight;
highlight-color;

Vertical Alignment Line Functions

screen02.cValinitAll()
arguments: none

Specifies all data for all _v_align structures.

Valinito screen02.c
arguments: pmdatap, valp, originx, origin_y, end x, end_y,

color, if-highlighted, highlightcolor, ifactive

typedef
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Initializes all data in a v-align structure.

ValDisplay()
arguments: valp, pmdname

Displays a vertical alignment line.

ValpSelect()
arguments: rcursx, rcurs_y

screen02.c

valpedit.c

Selection function for vertical alignment line. Cursor
coordinates are recalculated relative the the EMSQ pmd before
entering this function.

ValpEdito
arguments: verticalalign-line

valpedit.c

Interactive loop for moving an alignment line vertically.

Sidebearina Disolav Structure

struct _sdbear
int

int
int
int
pmd
int
int

*sdbear
origx, origy, endx, endy, extx,
exty;
width;
xoffset;
color;
*pmdname;
if-highlight;
highlightcolor; 131
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Sidebearinq Functions

int SBInitAll() screen02.c
arguments: none

Specifies all data for all sdbear data structures.

int SBInito screen02.c
arguments: pmdatap, sdbearp, origin x, origin_y, end_x,
end_y, color, if-highlighted, highlight-color, ifactive

Initializes all data in a sd bear structure.

int SBDisplayo screen02.c
arguments: sdbearp, pmd-name

Displays a side bearing line.

int SBSelecto valpedit.c
arguments: rcursx, rcurs_y

Selection function for side bearing lines. Cursor coordinates
are recalculated relative to the EMSQ pmd before being sent in.

int SBEdito valpedit.c
arguments: sidebearingjline

Interactive loop for moving a side bearing line horizontally.
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Pop Up Menu

A pop up menu is used to change working modes. This menu is displayed at the
current cursor location.

PoD Up Menu Functions

int MenuDisplay() menu.c
arguments: none

Interactive loop for displaying the pop up menu and for menu
item selection.

int itemSelecto menu.c
arguments: curtabx, curtaby, morigx, morigy, oy,
ydistance, leftmargin, rightmargin, numitems, extent_x,
height, menuextent_x

Function for selecting a menu item. There are four menu items
to correspond to the four working modes.

int ItemHlt( menu.c
arguments: item

Highlights a menu item.
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Letter and Part Structures and Functions

Letters

Letterform Library Structure

struct _letterlibrary
struct _letterclasses h_class, nclass, mclass, uclass,

i-class, Iclass, pclass, dclass,
b_class, qclass;

Letter Class Structure

struct letterclasses
struct -letters *letterlist;

numletters;

Letterform Structure

struct letters
struct _parts
struct _objects
int
int
int

*partlist;
*object;
height, width;
topalign, bottomalign;
left sidebearing, right sidebearing;
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Parts

PartLibrary Structure

struct _partlib
struct _partclass

partlib
stem, bowl, arch;

Part Class Structure

struct _partclass
partsubcl
int

*partclasses
subclass[1 0];
numsubs;

Part Subclass Structure

struct _partsubcl
int
_parts
int

Part Structure

struct _part
objects
int
struct _part
struct _part
int
int
int
int
int

*parts
object;
type;
*next, *previous;
*master;

height, width;
orientation, rotation;
topalign, botalign;
originx, originy;
x[1001, y[100], t[100];

typedef

typedef *partsubcl
name;
masterpart;
numparts;

typedef
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Part Functions

parts Partinito partdef.c
arguments: none

Allocates space for a part structure and initializes all pointers
to NULL and all integers to 0 or -1.

int MasterPartDefo partdef.c
arguments: none

Initializes all part structures. Reads part data from part files.
Assigns part classes, subclasses, and master part objects and
part names. Also initializes square and round alignment values.

parts PartCopy() partdef.c
arguments: from_partp

Copies frompart. Returns part copy.

parts MasterPartCopy() partdef.c
arguments: partp

Copies a master part and returns copy.

objects ShowParto showp.c
arguments: partp, iflines, ifpoints

Displays a part object on the screen in the EMSQ workspace
area. If iflines is TRUE display the outline of the part; if
ifpoints is TRUE, display the points. 136
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int PartHeightGeto rparts3.c
arguments: partp

Calculates the height of a part object.

int PartHeightEdit() rparts3.c
arguments: partp, newheight

Searches part object point y coordinates to locate those points
that need to be reset to change height of a part. Changes y
values of these points to the newheight.

int PartAlign_Xo rparts3.c
arguments: partp, align-value

Aligns a part object to a given x alignment value.

int PartAlignYO rparts3.c
arguments: partp, align-value

Aligns a part object to a give y alignment value.

int DrawOffPart() rparts3.c
arguments: partp, offset x, offsetjy

Displays a part object in the EMSQ workspace area at a given
offset x and offset y coordinate.

int ResetEmPartCoordso rparts3.c
arguments: partp 137
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Recalculates the offset, extent, and relative coordinates of a
part object.

rparts3.cRelPartCrdsCalco
arguments: partp

Calculates the relative coords of a part object.

Objects

Obiarray Structure

struct _objarrays
objects

*objarrays
object[40];
number;

Obiarray Functions

crobj03.cobjarrays ObjArrinit()
arguments: none

Allocates space for an objarray structure and initializes the

number to zero.

ObjArrayPut()
arguments: objarrayp, objectp

crobj03.c

Inserts the object at the end of the object array. Tests to see if
the object already exists in the array. If TRUE, the object is

typedef

objarray
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not inserted.

ObjArrDraw()
arguments: objarrp, pmd-name, color

mvobj0l.c

Draws the objects in an objarray in a given pmd and in a given
color.

Object Structure

struct _objects
char
rings
struct _objects
int
int
int
int

*object
*name;

ring[MAXRINGS];
*up[MAXUP], *down[MAXDOWN];
extentx, extenty;
offsetx, offsety;
numdown, numup;
numrings;

Object Functions

crobj03.cObjInit()
arguments: none

Allocates space for an object structure and initializes all
pointers in structure to NULL and all integers to zero.

store2.cWriteToFileO
arguments: objecpt

Writes an object list of coordinate values to files.

typedef

objects
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objects ReadObjo store2.c
arguments: none

Reads object coordinate values from file, and creates an object.

objects ObjCreate() crobj03.c
arguments: none

Interactive loop for creating a two way list of cubic spline
curve control points. Object curve control points are
interactively input by the user. Straight or curved point
markers are displayed. When the cursor loop is exited, a cubic
spline curve outline is drawn through the points. The object
offset and extent is calculated, and the point coordinates are
reset relative to the offset. The x, y offset is determined
relative to the origin point of the EMSQ pixel map.

int ObjSave() demol.c
arguments: objectp

Saves changes to an edited object.

objects ObjSelect() select05.c
arguments: seen arrayp, cursx, cursy

Tests to see which object in the seenarray the cursor is inside
and closest to the center of.

int ObjDrawo demol.c
arguments: objectp
Display an object on the screen. 140
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int ObjRedrawo gravity2.c
arguments: objectp

Redraws an object on the screen. So as not to erase other
objects on the screen, the seen array objects in the EMSQ
workspace are drawn in the INVEMSQ and used to erase the
EMSQ pmd before redrawing.

objects ObjCopy() trans03.c
arguments: fromobject

Copies an object.

int ObjMoveo mvobj0l.c
arguments: objectp, seenarrayp

Interactive loop for moving an object on the screen. In order to
not erase other objects, the seen array objects are drawn in
the INVEMSQ and BitBIt to the screen.

objects ObjMirrorV() opers.c
arguments: objectp

Vertical mirror transformation of an object. Repositions object
to original x object offset with XTranso.

objects ObjMirrorH() opers.c
arguments: objectp
Horizontal mirror transformation of an object. Repositions
object to original y object offset with YTranso.
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int ObjRotateo trans03.c
arguments: ringp, angle, centerx, centery

Uses a matrix transformation to rotate the points of an object
given a ring list of cells, an angle, and a center of rotation x and
y.

objects ObjRotation() opers.c
arguments: objecpt, degrees

A second object rotation function. This does not use a
translation matrix and is more accurate.

int ObjScale() trans03.c
arguments: ringp, centerx, centery, scalex, scaley

Uses a matrix transformation to scale the points of an object
given a ring list of cells, a center x and y and an x and y scale
factor.

objects ObjScaleX() opers.c
arguments: objectp, scale-factor

Scales object points in x by a given scale factor.

objects ObjScaleY() opers.c
arguments: objectp, scale-factor
Scale object points in y by a given scale factor.
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objects ObjTransX() opers.c
arguments: objectp, translatevalue

Translates object points in x by a given translation value.

objects ObjTransY() opers.c
arguments: objectp, translatevalue

Translates object points in y by a given translation value.

objects LeftAligno align.c
arguments: static-object, move-object

Aligns the left of move-object to the left of staticobject.

objects RightAlign() align.c
arguments: static-object, move-object

Aligns the right of move-object to the right of static-object.

objects TopAligno align.c
arguments: staticobject, moveobject

Aligns the top of move-object to the top of staticobject.

objects BottomAlign() align.c
arguments: staticobject, move-object
Aligns the bottom of move_object to the bottom of
static-object.
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objects SquareAligno align.c
arguments: objectp, vert-align_y

Aligns the bottom of an object to a given vertial alignment line y
value.

objects LeftOf( opers.c
arguments: rightobjectp, left objectp

Translates leftobject and positions it to the left of
right object. Recontours the two objects to create a single
object with ObjGlue_Xo. Returns the new joined object.
Syntax: to the left of right-object put left-object.

objects RightOf() opers.c
arguments: leftobject, right-object

Translates right-object and positions it to the right of
left object. Recontours the two objects to create a single
object with ObjGlueXo. Returns the new joined object.
Syntax: to the right of leftobject put right-object.

objects BottomOfO opers.c
arguments: top_object, bottom-object

Translates the bottom-object and positions it at the bottom of
topobject. Recontours the two objects to create a single
object with ObjGlueY(. Returns the new joined object.
Syntax: at the bottom of topobject put bottomobject.
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objects TopOf () opers.c
arguments: bottom-object, topobject

Translates the topobject and positions it on top of
bottomobject. Recontours the two objects to create a single
object with ObjGlueY(. Returns the new joined object.
Syntax: on the top of bottom-object put topobject.

int ObjGlueX() glutemp2.c
arguments: leftobjectp, right objectp

Join two objects by appending their lists of points to create a
single list. This new list is created by finding the upper left x
cell of the left object, initializing it as the first point in the new
list, and then adding each next point until the upper right cell of
the left object is reached. The cells of the right object are then
appended to this list, beginning with the upper left cell of the
right object, and continuing until the lower left cell of the
right object is reached. The remainder of the list of cells
belonging to the left object is then appended, beginning with
the lower right cell until the original starting cell of the
left object is reached. This list is a list of cell points to be
displayed on the screen, each referred to as a dcell. This list
contains pointers to the cpt pointers of each part object.
Therefore, part coordinates are automatically updated each
time a letter or part group contour is manipulated.

int ObjGlue_- Y() glutemp2.c
arguments: top_objectp, bottom objectp

Same as ObjGlueXO except that this function is used to recon-
tour a top and bottom object. The following sequence of points
is searched for and appended: the upper right cell of topobject 145
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to the lower right cell of topobject, the upper right cell of bot-
torn object to the upper left cell of bottom object, to the lower
left cell of topobject, to the origin point.

objects CrHostObjo glutemp2.c
arguments: objectp

Creates a pixel map in the invisible frame buffer, draws an
object, and BitBIt's the object to the host memory. A pmd is
created in host.

objects ScaledObjCreateo objdispl.c
arguments: objectp

Scales a copy of object and calculates and sets its scaled offset
and extent. This function is used for creating scaled objects to
displayin the SCALED, VIEW, and TEXT workspace areas.

int ScaledObjDisplayo objdispl.c
arguments: objectp

Displays a scaled object outline in the SCALED workspace area.

int ObjOverlapo mvobj0l.c
arguments: objectp, test-object

Tests to see if object and test-object overlap.

int ObjDimso mvobj0l.c
arguments: objectp, *ox, *oy, *ux, *uy
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Returns the origin x and y and the upper x or y coordinate
values of an object.

cells UpRightPtGeto glue4.c
arguments: objectp

Returns the upper right cell of an object.

cells UpLeftPtGet() glue4.c
arguments: objectp

Returns the upper left cell of an object.

cells LowRightPtGeto glue4.c
arguments: objectp

Returns the lower right cell of an object.

cells LowLeftPtGeto glue4.c
arguments: objectp

Returns the low left cell of an object.

int RecalcOffExto rparts3.c
arguments: objectp

Recalculates object offset and extent and resets object point
coordinates relative to these new values.
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int ObjMax_MinGet rparts3.c
arguments: objectp, *lowx, *Iowy, *highx, *highy

Returns the low and high x and y coordinate values of an object.

int ObjMinX() opers.c
arguments: objectp

Returns the lowest x value in an object list of points.

int ObjMinY() opers.c
arguments: objectp

Returns the lowest y value in an object list of points.

int Obj_MaxX() opers.c
arguments: objectp

Returns the highest x value in an object list of points.

int ObjMaxY() opers.c
arguments: objectp

Returns the highest y value in an object list of points.

int ObjBitinit() mvobj0l.c
arguments: offsetx, offsety, extentx, extenty,*visbltpmdname,

*vispmdname, *invbltpmdname, *invpmdname
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Creates a pmd in the EMSQ workspace pmd and in the
INVEMSQ pmd of the same size for BitBit.

Rinq Structure

typedef struct _rings
cells
int

rings
firstcell;
numcells;

Rinq Functions

Ringinito
arguments: none

crobj03.c

Allocates space for a ring structure and initializes all pointers
to NULL and all integers to zero.

RingTransformo
arguments: transformationmatrix, ringp

crobj03.c

Applies the transformationmatrix to the ring of cell point
coordinates.

Cell Structure

struct _cells
struct _cells
cpts

cells
*previous, *next;
cpt;

Cell Functions

rings

typedef
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cells Cellinito crobj03.c
arguments: none

Allocates space for a cell structure and initializes all pointers
to NULL and all integers to zero.

cells DCellinit() glutemp2.c
arguments: objectp, cptp

Allocates space for a dcell, and initializes its cptp to the
incoming cptp.

int CellInserto crobj03.c
arguments: cellp, previous cellp, objectp, numcells

Inserts a cell into a two way list of cells. Can insert a cell
after any given previouscell. If the previouscell is NULL, the
cell is inserted as the firstcell in the ring list.

cells CellLstEndGeto crobj03.c
arguments: ringp

Returns the last cell in a one way ring list of cells.

cells CellGeto mvsppt08.c
arguments: cellp, numcells

Returns a cell that is a certain number of cells aways from a
given cell (cellp).
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int CelIArrGetX() glue4.c
arguments: objectp, xvalue, cell-array, *xcellnum

Returns an array of cells that contain a given xvalue.

int CellArrGetY() glue4.c
arguments: objectp, yvalue, cell-array, *ycellnum

Returns an array of cells that contain a given yvalue.

cells SelectPointo select05.c
arguments: objectp, rcursx, rcursy

Tests to see if a cell point has been selected. If no point
selected , this function returns NULL, else it returns the cell.

int PtsDrawo rparts3.c
arguments: objectp

Display the points of an object on the screen in the EMSQ
workspace.

int DrawlnvPointso glutemp2.c
arguments: objectp, invpmdname
Draws the points of an object in a pmd in the INVEMSQ.

int DrawinvPointo rparts3.c
arguments: coordx, coordy, type, pmdname

Display a point of an object in any pmd. 151
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int DrawPointo gravity2.c
arguments: coordx, coordy, type

Draws the marker for a given point on the screen.

int ErasePoint() gravity2.c
arguments: coordx, coordy, type

Erases the marker for a point on the screen.

int MovePointo gravity2.c
arguments: objectp, cellp

Interactive loop for moving a selected point on the screen.

int CellMove() mvsppt08.c
arguments: seenarrayp, objectp, cellp

Interactive loop for graphically manipulating a cubic spline
curve segment on the screen. So as not to erase the visible
objects on the screen, the seen array of objects is drawn in the
INVEMSQ area and BitBIt to the screen prior to redrawing the
cubic spline curve.

int PtAlign() gravity2.c
arguments: objectp, x-or_y

Interactive loop for aligning points on the screen. Align the x or
y coordinate of any number of points to the x or y coordinate of
a reference point. The first point selected is the reference
point. The syntax is: align to this point, that point, that point 152
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and that point, etc.

int PtGravity() gravity2.c
arguments: objectp, alignment line_y

Interactive loop for aligning the y coordinates of any number of
points to any vertical alignment line.

int PtTypeChange() gravity2.c
arguments: cellp

Resets the type of point in a cell. Sets an if-changed flag to
TRUE

int PtTypeEdito gravity2.c
arguments: objectp

Interactive loop for editing the type of a selected point. Erases
the old marker type and displays the new one.

Cpt Structure

typedef struct _crds *cpts;

int coordx, coordy;
char type;
int crdflag;
int ifchanged;
int ifjoined;
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Cpt Functions

int CellCrdlnito crobj03.c
arguments: cellp, rcursx, rcursy

Sets cpt coordinates to x and y. X and y are in EM_SQ
coordinates.

int CoordConverto gravity2.c
arguments: objectp, oldoffsetx, oldoffsety

Recalculates object point coordinates relative to an oldoffsetx
and oldoffsety to newoffsetx and newoffsety.

int RelCrdsCalcO crobj03.c
arguments: objectp

Resets coordinates of object curve control points relative to the
object offset. Sets the relative coordinate flag to TRUE.

int RelXCrdsCalc() opers.c
arguments: objectp, x

Subtracts x from all x coordinates.

int RelYCrdsCalcO opers.c
arguments: objectp, y

Subtracts y from all y coordinates.
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int ToEmCrdso opers.c
arguments: objectp

Resets all object coordinate values to EMSQ workspace
coordinate values.
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